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Analysis of finite, noisy time series data leads to modern statistical inference methods. Here we
adapt Bayesian inference for applied symbolic dynamics. We show that reconciling Kolmogorov’s
maximum-entropy partition with the methods of Bayesian model selection requires the use of two
separate optimizations. First, instrument design produces a maximum-entropy symbolic represen-
tation of time series data. Second, Bayesian model comparison with a uniform prior selects a
minimum-entropy model, with respect to the considered Markov chain orders, of the symbolic data.
We illustrate these steps using a binary partition of time series data from the logistic and Hénon
maps as well as the Rössler and Lorenz attractors with dynamical noise. In each case we demon-
strate the inference of effectively generating partitions and kth-order Markov chain models. © 2007
American Institute of Physics. �DOI: 10.1063/1.2818152�

Continuous-valued time series data from a low-
dimensional deterministic chaotic attractor are com-
monly transformed into a symbolic sequence. If done cor-
rectly, the resulting discrete sequence captures the
behavior of the underlying dynamical system and one can
obtain, for example, accurate estimates of its fundamen-
tal invariants. However, if the projection is not done with
care, the resulting sequence can substantially misrepre-
sent the true dynamics, making them appear either sim-
pler or more complicated than they are. We consider the
effects of dynamical noise and finite data samples. We
show how to find appropriate symbolic representations
and estimate the observed randomness due to both deter-
ministic and stochastic elements. We break this problem
into two parts: (i) instrument design and (ii) model infer-
ence. Instrument design, the first step, attempts to mini-
mize the distortions that arise from projecting continuous
dynamics onto a finite alphabet. It has been known for
some time that an instrument should be designed so that
the symbol sequences it produces have maximum entropy
rate, thereby extracting the most information with each
measurement. Here we develop a Bayesian method for
optimal instrument design. We use model inference, the
second step, to estimate an optimal kth-order Markov
chain from the resulting symbolic data. We develop Baye-
sian model comparison to select a minimum entropy-rate
model, with respect to the order k, in order to find regu-
larity in the symbol sequence. Our central conclusion is
that the two separate optimizations—instrument design
and model inference—must be done together to avoid

misleading models and unnecessary errors in estimating
system properties.

I. INTRODUCTION

Research on chaotic dynamical systems during the last
40 years has produced a new vision of the origins of
randomness.1 It is now widely understood that observed ran-
domness can be generated by low-dimensional deterministic
systems that exhibit a chaotic attractor.2 In addition, additive
noise and finite data samples can add to the real or apparent
randomness.3,4 Today, when confronted with what appears to
be a high-dimensional stochastic process, one now asks
whether or not the process is instead a hidden low-
dimensional, but nonlinear dynamical system.

Previous research on analyzing time series from systems
that display deterministic or noisy chaos focused on estimat-
ing maps, systems of ordinary differential equations �ODEs�,
or local �non�linear models of the dynamics.5–8 Often, these
methods are quite effective and can be adapted to address
dynamical noise in their modeling of the dynamics. How-
ever, many do not take direct advantage of modern math-
ematical statistics methods, such as maximum likelihood or
Bayesian estimation. This is a distinct disadvantage since,
without such methods, estimates of uncertainty in inference
and in model comparison are generally unavailable. These
concerns motivate our investigation of an alternative method
for time series from nonlinear dynamical systems.

Symbolic dynamics, as one of a suite of tools in dynami-
cal systems theory, considers a coarse-grained view of a con-
tinuous dynamics.9 Transforming continuous-state time se-
ries into a symbol sequence opens the door to applying well
developed methods for discrete-valued random processes
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from statistical physics, information theory, and mathemati-
cal statistics. However, converting from a continuous state
space to a finite set of symbols must be done with great care
since chaotic dynamics are sensitive to the measurement
process.10 As it turns out, this sensitivity is both a blessing
and a curse.

Previous developments of symbolic dynamics concen-
trated on deterministic chaos without additive noise and as-
sumed knowledge of the dynamical system at hand; see, for
example, Refs. 5 and 9, and references therein. Recent work
has attempted to extend the successful analysis of one-
dimensional maps to higher-dimensional systems. Examples
include analysis of the Hénon map11 and a coupled map
lattice.12 In addition, application of symbolic dynamics
methods to ordinary differential equations have been consid-
ered in Refs. 9, 13, and 14.

Current research in applied symbolic dynamics tech-
niques focuses on extracting information from available time
series data. It is assumed the analyst has little or no knowl-
edge of the dynamical system under investigation and is con-
fronted with effects from finite data samples and additive or
observational noise.15 Under these conditions, the main re-
sults of symbolic dynamics are not strictly valid. As a result,
a variety of methods for finding an approximate generating
partition have been developed.16–19 In addition, methods for
estimating topological and metric entropies from symbolic
data have been pursued as a means to identify effective
coarse-grainings.3,20–22 We note that recent work on estimat-
ing entropies from finite data samples of a more general na-
ture should be considered23–26 in addition to the references
above.

Here we address the interplay between optimal instru-
ments and optimal models by analyzing a set of relatively
simple nonlinear systems, though the principles and proce-
dures generalize to more complex systems. To effectively
model time series of discrete data from a continuous-state
system, two concerns must be addressed. First, we must con-
sider the measuring instrument and the representation of the
true dynamics which it provides. In the process of instrument
design we consider the effect of projecting a continuous state
space onto a finite set of disjoint regions—a model of mea-
surement with finite resolution. Second, we must consider
the inference of models based on these data. The relation
between these steps is more subtle than one might expect. As
we will demonstrate, on the one hand, in the measurement of
chaotic data, the instrument should be designed to maximize
the entropy rate of the resulting symbolic data stream. This
allows one to extract as much information from each mea-
surement as possible. On the other hand, model inference
strives to minimize the apparent randomness �entropy rate�
over a class of alternative models. This reflects a search for
determinism and structure in the symbolic data. These crite-
ria are clearly at odds, and so they must be implemented with
care.

To address these issues, Sec. II considers the design and
evaluation of instruments for chaotic maps with additive
noise. This is predominantly a review of previously devel-
oped methods for symbolic dynamics of noise-free chaotic
maps. However, it provides guiding principles for the noisy

and finite data-sample setting we will consider. In Sec. III we
describe Bayesian inference of a kth-order Markov chain to
model the resulting symbolic data stream. We provide suffi-
cient detail for the reader to follow the principles under in-
vestigation. However, for a more detailed development of the
ideas presented in the section the reader should consult Ref.
27. In Sec. IV we describe experiments using the logistic and
Hénon maps as well as the Rössler and Lorenz attractors
with additive noise. The simplicity of these examples serves
to highlight several technical issues and trade-offs in imple-
menting the multilevel Bayesian modeling scheme that we
advocate. Finally, in Sec. V we discuss the consequences of
our results, drawing general lessons for modeling more com-
plex systems.

II. INSTRUMENT DESIGN

A. Symbolic dynamics

Our model system is a one-dimensional chaotic map
with additive noise3

xt+1 = f�xt� + �t, �1�

where t=0,1 ,2 , . . ., xt� �0,1�, and �t is an independent iden-
tically distributed �IID� random variable with uniform den-
sity on the interval �−� /2,� /2�. We will refer to this as a
noise level of �. To start, we consider the design of instru-
ments in the zero-noise limit. This is the regime of most
previous work in symbolic dynamics and provides a conve-
nient initial frame of reference.

The construction of a symbolic dynamics representation
of a continuous-state system goes as follows.9 We assume
time is discrete and consider a map f from the state space M
to itself f :M→M. This space can be partitioned into a finite
set P= �Ii :�iIi=M ; Ii� Ij = � , i� j� of nonoverlapping re-
gions in many ways. The most powerful is called a Markov
partition and must satisfy two conditions. First, the image of
each region Ii must be a union of partition elements: f�Ii�
=� jIj , ∀ i. Second, the map f�Ii�, restricted to a partition
element, must be one-to-one and onto. If a Markov partition
cannot be found for the system under consideration, the next
best coarse-graining is called a generating partition. For one-
dimensional maps, these are often easily found using the
extrema of f�x�, its critical points. The critical points in the
map are used to divide the state space into intervals Ii over
which f is monotone. Note that Markov partitions are gener-
ating, but the converse is not generally true.

Given any partition P= �Ii : i=0,1 , . . . ,K−1�, then, a se-
ries X=x0x1 , . . . ,xN−1 of continuous-valued states can be pro-
jected onto its symbolic representation S=s0s1 , . . . ,sN−1. The
latter is simply the associated sequence of partition-element
indices. This is done by defining an operator ��xt�=st that
returns a unique symbol st= i for each Ii from an alphabet
A= �0,1 , . . . ,K−1� when xt� Ii.

The central result in symbolic dynamics establishes that,
using a generating partition, increasingly long sequences of
observed symbols identify smaller and smaller regions of the
state space. Starting the system in such a region produces the
associated measurement symbol sequence. In the limit of in-
finite symbol sequences, the result is a discrete-symbol rep-
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resentation of a continuous-state system—a representation
that, as we will show, is often much easier to analyze. In this
way a chosen partition creates a symbol sequence ��X�=S
which describes the continuous-valued dynamics. The choice
of partition is equivalent to our instrument-design problem.

B. Evaluating an instrument

The effectiveness of a partition �in the zero-noise limit�
can be quantified by estimating the entropy rate of the result-
ing symbolic sequence. To do this we consider length-L
words sL=stst+1 , . . . ,st+L−1. The block entropy of length-L se-
quences obtained from partition P is then

HL�P� = − �
sL�AL

p�sL�log2 p�sL� , �2�

where p�sL� is the probability of observing the word sL

�AL. From the block entropy the entropy rate can be esti-
mated as the following limit:

h��P� = lim
L→�

HL�P�
L

. �3�

In practice, it is often more accurate to calculate the length-
L estimate of the entropy rate using

h�L�P� = HL�P� − HL−1�P� . �4�

Another key result in symbolic dynamics says that the
entropy of the original continuous system is found using gen-
erating partitions.28,29 In particular, the true entropy rate
h��f� maximizes the estimated entropy rates,

h��f� = max
�P�

h��P� . �5�

Thus, translated into a statement about experimental design,
this result tells us to design an instrument so that it maxi-
mizes the observed entropy rate h�L�P�. This reflects the fact
that we want each measurement to produce the most infor-
mation possible about the behavior of the measured system.

As a useful benchmark on this, useful only in the case
when we know f�x�, Pesin’s Identity30 tells us that the value
of h��f� is equal to the sum of the positive Lyapunov char-
acteristic exponents,

h��f� = �
i

�i
+, �6�

where �i
+ indicate positive exponents. For 1D maps there is a

single Lyapunov exponent � which is numerically estimated
from the map f and a trajectory �xt : t=1, . . . ,N� using

� = lim
N→�

1

N�
t=1

N

log2�f��xt�� . �7�

A related set of equations for multidimensional maps and
flows can be obtained using the Jacobian matrix and time
series data; see, for example, Ref. 5.

Taken altogether, these results tell us how to design our
instrument for effective observation of deterministic chaos.
Notably, in the presence of noise no such theorems exist.
Nonetheless, Ref. 3 demonstrated that the methods devel-
oped above are robust in the presence of noise. However, we

expect that the equality in Eq. �6� no longer applies when the
addition of dynamical noise is considered. For noisy chaos,
the entropy rate should in general be greater than the sum of
the Lyapunov exponents estimated from the noise-free sys-
tem. This is not incorrect, dynamical noise should increase
the entropy rate because it affects the dynamics of the system
of interest.

In any case, we view the output of the instrument as a
stochastic process. A sample realization D of length N with
measurements taken from a finite alphabet is the basis for
our inference problem, D=s0s1 , . . . ,sN−1, st�A. For our pur-
poses here, the sample is generated by a partition of
continuous-state sequences from iterations of a low-
dimensional map or flow on a chaotic attractor. This means,
in particular, that the resulting discrete-valued stochastic pro-
cess is stationary. We assume, in addition, that the alphabet is
binary A= �0,1�. This assumption is motivated by our appli-
cation to a variety of systems which display return maps that
can be approximated by single peak, one-dimensional maps.
A partition divider located at the critical point of these maps
produces the assumed binary alphabet and results in a com-
pact coarse-graining of the data. In principle, larger alphabets
could be considered, but, at fixed data length N, this affects
the inference process by creating fewer samples of larger-
alphabet sequences without gaining any new information. As
a result, we choose the simple binary alphabet.

III. MODELING SYMBOLIC DATA

A. Bayesian inference of kth-order Markov chains

Given a method for instrument design the next step is to
estimate a model from the observed measurements. Here we
employ the model class of kth-order Markov chains and
Bayesian inference as the model estimation and selection
paradigm following our development in Ref. 27.

The kth-order Markov chain model class makes two
strong assumptions about the data sample. The first is an
assumption of finite memory. In other words, the probability
of st depends only on some previous k symbols in the data
sample. We introduce the more compact notation s�t

k

=st−k+1 , . . . ,st to indicate a length-k sequence of measure-
ments ending at time t. The finite memory assumption is then
equivalent to saying the probability of the observed data can
be factored into the product of terms with the form p�st+1 �s�t

k�.
The second assumption is stationarity. This means the prob-
ability of observed sequences does not change with position
in the data sample, p�st+1 �s�t

k�= p�s �s�k� for any index t. As
noted above, this assumption is satisfied by the data streams
considered here. The first assumption, however, is often not
true of chaotic systems. They can generate time series with
infinitely long temporal correlations. Thus, in some cases, we
may be confronted with out-of-class modeling. Note, how-
ever, that in the case that the instrument defines a Markov
partition, the Markov chain model class is exactly appropri-
ate.

A kth-order Markov chain model Mk has a set of param-
eters
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�k = �p�s�s�k�:s � A,s�k � Ak� . �8�

The notation � is conventional in mathematical statistics for
all model parameters that are to be estimated. For example, a
k=1 Markov chain has parameters �1

= �p�0 �0� , p�1 �0� , p�0 �1� , p�1 �1��. Consistent with this, for
integrals we write d�1=dp�0 �0�dp�1 �0�dp�0 �1�dp�1 �1�. A
similar pattern holds for larger Markov chain order k.

In Bayesian inference we connect the model parameters
�k for model Mk with the observed data D. To do this, we
write down the likelihood P�D ��k ,Mk� and the prior
P��k �Mk� and then calculate the evidence P�D �Mk�. The
posterior distribution P��k �D ,Mk� is obtained from these us-
ing Bayes’ theorem,

P��k�D,Mk� =
P�D��k,Mk�P��k�Mk�

P�D�Mk�
. �9�

The posterior describes the distribution of model parameters
�k given the model Mk and observed data D. From this the
expectation of the model parameters can be found along with
estimates of the uncertainty in the expectations. In the fol-
lowing sections we outline the specification of these quanti-
ties following Refs. 27, 31, and 32.

1. Likelihood
Within the Markov chain model class, the likelihood of

an observed data sample is given by

P�D��k,Mk� = 	
s�A

	
s�k�Ak

p�s�s�k�n�s�ks�, �10�

where n�s�ks� is the number of times the word s�ks occurs in
sample D. We note that Eq. �10� is conditioned on the start
sequence s�k−1

k =s0s1 , . . . ,sk−1.

2. Prior
The prior is used to describe knowledge about the model

class. In the case of Mk models, we choose a product of
Dirichlet distributions, the so-called conjugate prior.31,32 Its
form is

P��k�Mk� = 	
s�k�Ak

��	�s�k��
	 s�A��	�s�ks��


�
1 − �
s�A

p�s�s�k�� 	
s�A

p�s�s�k�	�s�ks�−1, �11�

where 	�s�k�=�s�A	�s�ks� and ��x� is the gamma function.
The prior’s hyperparameters �	�s�ks� :s�A ,s�k�Ak� are as-
signed to reflect knowledge of the system at hand and must
be real and positive. An intuition for the meaning of the
hyperparameters can be obtained by considering the mean of
the Dirichlet prior,

Eprior�p�s�s�k�� =
	�s�ks�
	�s�k�

. �12�

In practice, a common assignment is 	�s�ks�=1 for all hyper-
parameters. This produces a uniform prior over all of the
Markov chain parameters, reflected by the expectation
Eprior�p�s �s�k��=1 / �A�.

The uniform prior for the Markov chain parameters re-
sults in a distribution of entropy rates peaked at the maxi-
mum of log2�A� bits per symbol. As a result, estimates of the
entropy rate for any order k will approach the true value from
above.

3. Evidence
The evidence is often seen as merely a normalization

term in Bayes’ theorem—a term that can be ignored. How-
ever, when model comparison of different orders and estima-
tion of entropy rates are considered, it becomes a fundamen-
tal part of the analysis. The evidence is defined as

P�D�Mk� = �d�kP�D��k,Mk�P��k�Mk� , �13�

and provides the average of the likelihood with respect to the
prior. Equivalently, it gives the probability of the data D
given the model Mk. For the likelihood and prior derived
above, the evidence is found analytically,27

P�D�Mk� = 	
s�k�Ak

��	�s�k��
	 s�A��	�s�ks��

	 s�A��n�s�ks� + 	�s�ks��
��n�s�k� + 	�s�k��

.

�14�

4. Posterior
The posterior distribution is constructed from the ele-

ments derived above according to Bayes’ theorem Eq. �9�,
resulting in a product of Dirichlet distributions. This is a
result of choosing the conjugate prior and generates the fa-
miliar form,

P��k�D,Mk� = 	
s�k�Ak

��n�s�k� + 	�s�k��
	 s�A��n�s�ks� + 	�s�ks��


�
1 − �
s�A

p�s�s�k�� 	
s�A

p�s�s�k�n�s�ks�+	�s�ks�−1.

�15�

The mean for the model parameters �k according to the pos-
terior distribution is then

Epost�p�s�s�k�� =
n�s�ks� + 	�s�ks�
n�s�k� + 	�s�k�

. �16�

Given these estimates of the model parameters �k, the
next step is to decide which order k is best for a given data
sample.

B. Model comparison of orders k

Bayesian model comparison is very similar to the param-
eter estimation process discussed above. Following Ref. 27
we start by enumerating the set of model orders to consider
M= �Mk :k� �kmin,kmax��. The probability of a particular or-
der can be found by considering two factorings of the joint
distribution P�Mk ,D �M�. Solving for the probability of a
particular order we obtain

P�Mk�D,M� =
P�D�Mk,M�P�Mk�M�

P�D�M�
, �17�

where the denominator is given by the sum
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P�D�M� = �
Mk��M

P�D�Mk�,M�P�Mk��M� . �18�

This expression is driven by two components: the evidence
P�D �Mk ,M�= P�D �Mk� in Eq. �14� and the prior over
model orders P�Mk �M�. Two common priors are a uniform
prior over orders and an exponential penalty for the size of
the model P�Mk �M��exp�−�Mk��. For a kth-order Markov
chain the size of the model, or number of free parameters, is
given by �Mk�= �A�k��A�−1�. To illustrate the method we will
consider only the prior with a penalty for model size. Under
these assumptions, the probability of order Mk is given by

P�Mk�D,M� =
P�D�Mk,M�exp�− �Mk��

�Mk�
P�D�Mk�,M�exp�− �Mk���

. �19�

In the examples to follow, the model order Mk which has the
highest probability according to the above expression will be
used for estimation of the entropy rate.

C. Entropy rate estimation

The entropy rate of an inferred Markov chain can be
estimated by extending the method for independent identi-
cally distributed �IID� models of discrete data24 using type
theory.33 In simple terms, type theory shows that the prob-
ability of an observed sequence can be suggestively rewritten
in terms of the relative entropy �Kullback-Leibler �KL� dis-
tance� and the entropy rate Eq. �3�. This form suggests a
connection to statistical mechanics. This, in turn, allows us to
define a partition function and so to find average
information-theoretic quantities over the posterior by taking
derivatives. In the large data limit, the relative entropy van-
ishes and we are left with the desired estimation of the Mar-
kov chain’s entropy rate.

We introduce this method for computing the entropy rate
for two reasons. First, the result is a true average over the
posterior distribution, reflecting a strict adherence to Baye-
sian methods. Second, this result provides a computationally
efficient method for entropy rate estimation without, for ex-
ample, needing numerical linear algebra packages. This pro-
vides a distinct benefit when large alphabets or Markov chain
orders k are considered. The complete development is be-
yond our scope here; see Ref. 27. However, we will provide
a brief sketch of the derivation and quote the resulting esti-
mator.

The connection we draw between inference and informa-
tion theory starts by considering the product of the prior Eq.
�11� and likelihood Eq. �10�,

P��k�Mk�P�D��k,Mk� = P�D,�k�Mk� . �20�

This product forms a joint distribution over the observed data
D and model parameters �k given the model Mk. Writing the
normalization constant from the prior as Z to save space, this
joint distribution can be written, without approximation, in
terms of conditional relative entropies D�· · � and entropy
rates h��·�,

P�D,�k�Mk� = Z2−k�D�QP�+h��Q��2+�A�k+1�D�UP�+h��U��, �21�

where k=�s�k,s�n�s�ks�+	�s�ks��. The probabilities used above
are

Q = �q�s�k� =
n�s�k� + 	�s�k�

k
,q�s�s�k� =

n�s�ks� + 	�s�ks�
n�s�k� + 	�s�k� � ,

�22�

U = �q�s�k� =
1

�A�k
,q�s�s�k� =

1

�A�� , �23�

where Q is the distribution defined by the posterior mean, U
is a uniform distribution, and P= �p�s�k� , p�s �s�k�� are the
“true” parameters given the model class. The information
theory quantities are given by

D�QP� = �
s,s�k

q�s�k�q�s�s�k�log2
q�s�s�k�
p�s�s�k�

, �24�

h��Q� = − �
s,s�k

q�s�k�q�s�s�k�log2 q�s�s�k� . �25�

The form of Eq. �21� and its relation to the evidence
motivates the connection to statistical mechanics. We inter-
pret the evidence P�D �Mk�=�d�kP�D ,�k �Mk� as a partition
function Z= P�D �Mk�. Using conventional techniques from
statistical mechanics, the expectation and variance of
D�Q  P�+h��Q� are obtained by taking derivatives of
−log Z with respect to k. In this sense E�Q , P�=D�Q  P�
+h��Q� plays the role of an energy and k is comparable to
an inverse temperature. We take advantage of the known
form for the evidence provided in Eq. �14� to exactly calcu-
late the desired expectation, resulting in

Epost�E�Q,P�� =
1

log 2�
s�k

q�s�k���0��kq�s�k��

−
1

log 2�
s�k,s

q�s�k�q�s�s�k���0��kq�s�k�q�s�s�k�� ,

�26�

where the polygamma function is defined as ��n��x�
=dn+1 /dxn+1 log ��x�.

The meaning of the terms on the RHS of Eq. �26� is not
immediately clear. However, we can use an expansion of the
n=0 polygamma function ��0��x�=log x−1 /2x+O�x−2�,
which is valid for x�1, to find the asymptotic form,

Epost�E�Q,P�� = H�q�s�k�q�s�s�k�� − H�q�s�k��

+
1

2k
�A�k��A� − 1� + O�1/k

2� . �27�

The values of H�q�s�k�q�s �s�k�� and H�q�s�k�� are block entro-
pies over words of length k+1 and k, respectively. These
entropies can be calculated using the form in Eq. �2� and the
distribution Q in Eq. �22�. From this expansion we can see
that the first two terms make up the entropy rate h�k�Q�
=H�q�s�k�q�s �s�k��−H�q�s�k��. The last term must be associated
with the conditional relative entropy between the posterior
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mean estimate �PME� distribution Q and the true distribution
P. Assuming the conditions for the approximation in Eq. �27�
hold, the factor 1 /k tells us that the desired expectation will
approach the entropy rate as 1 /N, where N is the length of
the data sample.

IV. EXAMPLES

Now that we have our instrument design and model in-
ference methods fully specified we can describe the experi-
ments used to test them. We consider the logistic and Hénon
maps as well as the Rössler and Lorenz ODEs. The specifics
of the time series generation for each system are detailed
below. For each time series, a family of binary partitions,
appropriate to the system under study is applied to the suit-
ably processed data.

These examples serve to demonstrate the principles that
are the basis of the above methods: �1� instrument design
should maximize the entropy rate of the generated symbol
sequence and �2� model selection should minimize the en-
tropy rate of the chosen model order. The first principle relies
on the applicability of abstract symbolic dynamics, as laid
out in Sec. II to the dynamical noise setting. The second
principle can be understood as connecting model comparison
with entropy rate estimation; the Bayesian evidence appears
in both model comparison and entropy-rate estimation. Care-
ful inspection reveals that minimizing the entropy rate for a
given order k maximizes the corresponding model probabil-
ity.

A. Logistic map

Data from simulations of the one-dimensional logistic
map, given by

xt+1 = rxt�1 − xt� + �t, �28�

at the chaotic value of r=3.7 were the basis for the analysis
in our first example. A set of noise levels from �=10−4 to �
=10−1 was used for the added fluctuations. Recall that noise
level � means a uniform density on the interval �−� /2,� /2�
was sampled.

For each value of � considered, a random initial condi-
tion in the unit interval was generated and 1000 transient
steps, not analyzed, were generated to find a typical state on
the chaotic attractor. Next, a single time series
x0 ,x1 , . . . ,xN−1 of length N was produced.

The family of partitions used to analyze the logistic map
data were given by

P�d� = �“0 ” � x � �0,d�, “ 1 ” � x � �d,1�� , �29�

and parametrized by the decision point d� �0,1�.
In Figs. 1–3 we analyze time series from the logistic

map at r=3.7, a typical chaotic parameter setting at which
deterministic dynamics plus noise stays within the unit inter-
val. Figure 1 illustrates the instrument design procedure for a
single time series of length N=105 generated with �=10−3.
Panel �b� shows the entropy rate h��d� for 400 decision
points d. The dependence on d is nontrivial with many local
maxima. In fact, there are two prominent peaks, one at d

FIG. 1. Optimizing instrument design for the logistic map at r=3.7 and with
noise level �=10−3. Panel �b� plots entropy rate h��d� vs decision point d.
The dashed horizontal line provides the noise-free Lyapunov exponent esti-
mate of ��0.51. Panel �a� plots the selected optimal Markov chain order
for each decision point.

FIG. 2. The model-order selection process for a sample of decision points at
r=3.7. Panel �b� shows the estimated entropy rate h��k� vs model order k.
Panel �a� plots the posterior probability of the model order, illustrating the
selection of the optimal order with minimum entropy rate.
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=1 /2 and the other at d=max�f−1�1 /2��. One also sees that
values of d off the attractor produce sequences of all zeros or
ones and so have zero entropy rate.

The dashed gray line provides a numerical estimate of
the Lyapunov exponent for this r value, ��0.512 bits per
iteration. The entropy rate estimate for d=1 /2 is h�

�0.560 bits per symbol. This larger estimate relative to the
noise-free value of the Lyapunov exponent is not unexpected
due to the additive noise and modest sample length. Unlike
the noise-free form for Pesin’s Identity given in Eq. �6�, we
expect the observed entropy rate to contain contributions
from local spreading, added fluctuations, and finite data.3,34

In panel �a� of Fig. 1 we consider the selection of an
optimal Markov chain order versus d. The selected order k
was used to estimate the entropy rate for each value of d.
Order k=1 is only selected for the values of d which produce
all zeros or ones. This reflects the fact that d=1 /2 is not a
Markov partition for r=3.7. However, this decision point is
still generating. This is indicated by the entropy rate h��d�
reaching its maximum there. It is important to note that sim-
pler models, associated with lower selected order k, can be
found away from the generating partition. These are ex-
amples of apparently simpler models being inferred due to
misplaced decision points—decision points with nonmaxi-
mal entropy rate.

Next, consider the model-order estimation process for
r=3.7 presented in Fig. 2. In panel �b� we plot the estimated
entropy rate h��k� versus model order k for a variety of de-

cision points. In this case only the trivial decision point of
d=0.2 selects the k=1 Markov chain. However, the approxi-
mate generating partition at d=1 /2 selects k=7. Here the
appropriate decision point results in a more complicated
model. In panel �a� of Fig. 2 we plot the posterior model
probability versus k. Again, this demonstrates that the model
order with minimum entropy rate h��k� is selected for each
decision point.

Finally, we consider a variety of fluctuation levels from
�=10−4 to �=10−1 for the logistic map at r=3.7 and using a
sample size N=105 in Fig. 3. In panel �b� we plot the esti-
mated entropy rate h��d� versus decision point for each noise
level. In addition, the Lyapunov exponent for the noise-free
map is plotted as a dashed horizontal line. An obvious pat-
tern, as discussed above, emerges: the entropy rate increases
with � for constant r and sample size N. However, the ap-
propriate decision point of d=1 /2 is still selected despite the
increasing fluctuations. In panel �a� we consider the order of
the model selected for the largest and smallest noise level,
�=10−1 and �=10−4, respectively. As the noise level in-
creases there are two interesting effects. First, the dynamics
at large � occur on a larger portion of the unit interval. This
results in higher-order Markov chains at decision points off
of the noise-free attractor. Second, the Markov chain order
for regions on the noise-free attractor are decreased for in-
creasing �. In this, we see that fluctuations mask the under-
lying deterministic structure, reducing the range of temporal
correlations.

B. Hénon map

Simulations from the two-dimensional Hénon map,
given by

xt+1 = 1 − axt
2 + yt + �t

x, yt+1 = bxt + �t
y , �30�

at a=1.4 and b=0.3, provided the time series for our second
example. A set of noise levels from �=10−4 to �=10−2 were
considered for �t

x and �t
y. Larger � resulted in orbits that

diverged. For each value of �, a random initial condition was
generated and 1000 transient steps, not analyzed, were gen-
erated to find a typical state on the noisy attractor. Next, a
single time series of length N=105 was produced.

For the Hénon map we consider the family of partitions

P�d� = �“0 ” � x � �− 1.5,d�, “ 1 ” � x � �d,1.5�� , �31�

which dissects the x -y plane into two by a line at x=d.
�y-values of the generated time series are effectively ig-
nored.� Although this might seem to be an overly simple
instrument, the results demonstrate that it is quite effective.

In Fig. 4 we consider instrument design for the Hénon
map for the parameters above. In panel �b� we plot the en-
tropy rate h��d� versus decision point d for a variety of fluc-
tuation levels. In addition, a numerical estimation of the
positive Lyapunov exponent for the noise-free Hénon map is
plotted as a dashed horizontal line. As with the logistic map,
we see a nontrivial dependence of the entropy rate on the
decision point with a variety of local maxima. However, the
range of noise levels has a relatively small effect on the
estimated entropy rate, increasing the value only slightly. As

FIG. 3. Analysis of instrument design at a variety of noise levels for the
logistic map at r=3.7 and sample size N=105. Panel �b� plots entropy rate
h��d� vs decision point d for �=10−4 to �=10−1. The dashed gray line
provides the Lyapunov exponent ��0.51 for the logistic map at r=3.7.
Panel �a� plots the selected optimal Markov chain order for each decision
point. The largest and smallest noise levels are considered.
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discussed above, we found values of � greater than �=10−2

caused trajectories to diverge. For each of the fluctuation
levels considered, an optimal decision point near d=−0.05
was found. The estimated noise-free Lyapunov exponent
�calculated with a time series of length 105� was found to be
��0.61 bits per iteration. The estimated values of the en-
tropy rate at the chosen decision point were found to range
from h��0.65 to 0.66 bits per symbol from smallest � to
largest.

In panel �a� of Fig. 4 we show the selected model-order
versus decision point for the largest and smallest fluctuations
considered. The results are comparable to panel �a� of Fig. 3
for the logistic map. As we saw there, increased fluctuations
generally resulted in a decrease in the selected order. We see
a similar effect in the results from the Hénon map, although
the effects are not as dramatic due to the limited range of �
which could be considered without divergence.

Finally, consider the model-selection process for the
Hénon map shown in Fig. 5 for a variety of decision points.
Panel �b� shows the entropy rate h��k� versus order k. As
with the logistic map, the decision point closest to the se-
lected value, in this case d=0, displays the largest value of
h��k� for all k. In addition, the minimum of h��k� with re-
spect to k identifies the selected order k. Panel �a� plots the
posterior model probability versus order k. Here we see that
the order k with a minimum in h��k� in panel �b� is selected
by model comparison, reflected by a high probability in
panel �a�.

C. Rössler attractor

With our third example we analyze a symbolic time se-
ries from a system of ODEs, rather than a discrete time map.
The continuous-time and continuous-state data must first be
transformed so that we can apply a simple binary partition
and estimate a Markov chain model. We start by describing
the system of interest and the techniques used to generate
and sample the data.

The Rössler flow is given by the set of ODEs,35

dx

dt
= − y − z + �x,

dy

dt
= x + ay + �y ,

�32�
dz

dt
= b + z�x − c� + �z,

where a=0.2, b=0.2, and c=5.7 were used for our simula-
tions. Data was generated by using a fourth-order Runge-
Kutta integrator with step size dt=0.01. Each noise term �x,
�y, and �z used a noise level of �=3. The fluctuations were
added at each integration time step. A random initial condi-
tion was generated and 50 000 time steps, not considered,
were integrated to remove transients. Next, a single time se-
ries of 107 time steps was created and a sampling rate of one
data point per 25 integration time steps was employed. In
this way, a time series of �xt ,yt ,zt� was created.

Next, the time series data was processed in a manner that
takes advantage of the attractor’s low dimension. The �xt�
time series was used to create a Lorenz map.36 This is done

FIG. 4. The instrument design process for the Hénon map at a=1.4 and b
=0.3. Panel �b� shows the estimated entropy rate h��d� vs decision point d
for various noise levels. Panel �a� plots the selected model order vs decision
point for the largest and smallest noise levels considered.

FIG. 5. The model-order selection process for the Hénon map at a=1.4, b
=0.3, and fluctuation level �=10−3. Panel �b� shows the estimated entropy
rate h��k� vs model order k for a set of decision points. Panel �a� plots the
posterior model probability vs model order k for a variety of decision points.
Note that the results for all decision points except d=1.125 overlap in this
panel and select k=8.

043127-8 C. C. Strelioff and J. P. Crutchfield Chaos 17, 043127 �2007�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://cha.aip.org/cha/copyright.jsp



by scanning the data for maxima in the time series. Each
time a local maxima is encountered, the value is recorded as
demonstrated in Fig. 6. In this way, a return map can be
constructed by considering the sequence of maxima. The re-
sult of this process is shown in Fig. 7, where the first 1000
data points from the Lorenz map are plotted. A noisy, single
hump map is clearly present.

Following the recipe described above results in a set of
maxima of length N=17 104. This was the time series that
we analyzed.

For the Rössler data we consider a family of partitions

P�d� = �“0 ” � x � �0,d�, “ 1 ” � x � �d,15�� , �33�

parametrized by the decision point d. The minimum of d
=0 and maximum of d=15 were chosen to cover the range of
xmax values exhibited plus a margin.

The results of the instrument design process for the
Rössler attractor data are presented in Fig. 8. Panel �b� plots
the entropy rate h��d� versus decision point for 400 values
between d=0 and d=15. As with the previous examples, we
see a nontrivial relation between the entropy rate and the
decision point. There are multiple peaks with a clear global
maximum of h��d��0.85 bits per symbol at d=7.725. If we
compare this with the return map in Fig. 7 we see that this
decision point identifies the apparent critical point.

The entropy rate is quoted in bits per symbol and so is
not numerically comparable to Lyapunov exponents given in
the ODEs natural time units. For example, in Ref. 37 the

single positive Lyapunov exponent is quoted as �+=0.0714
�base-e� for noise-free dynamics. To directly compare the
value we must divide our value of h��d� by the average time
between maxima �found to be �t=5.85� and multiply by log
2 to convert to base-e. This results in the estimated entropy
rate of hest�0.1. As we saw in previous examples, a small
data set with added noise is expected to display a larger
value for the entropy rate. With increasing data we expect
hest to approach �+=0.0714. However, we do not expect
equality of these estimates due to contributions from the dy-
namical noise.

Finally, in panel �a� of Fig. 8 we consider the model-
order selected versus decision point for the Rössler attractor
data. As we saw in previous examples, k=1 is selected for
instruments that label data as all zeros or all ones. However,
a range of orders is selected when meaningful decision
points are used. The generally lower order of the Markov
chains selected in this example are due to the smaller data
sample of N=17 104 rather than 105.

D. Lorenz attractor

In our final example we consider another well known
chaotic attractor found in the Lorenz ODEs. This system
models the three dominant Fourier modes of a two-
dimensional fluid heated from below. As with the Rössler
system, we will demonstrate that an effective symbolic rep-
resentation can be found using the Lorenz map technique.

FIG. 6. The x-dynamics from the Rössler attractor at a=0.2, b=0.2, and c
=5.7. Each time a maximum is reached, the value xmax is recorded.

FIG. 7. Lorenz map created from the x-dynamics of the Rössler attractor.
For this plot a fluctuation level of �=3 was used for each degree of freedom.
A noisy unimodal return map, similar to the logistic map, is clearly present.

FIG. 8. The instrument design process for the Rössler attractor at a=0.2,
b=0.2, and c=5.7. Panel �b� shows the estimated entropy rate h��d� vs
model order d for noise level �=3. Note the entropy rate is given in bits per
symbol and so should not be directly compared to the positive Lyapunov
exponent estimated from the flow. �See discussion in the text.� Panel �a�
plots the selected model order vs decision point. Note low orders are se-
lected due to the relatively small data sample N=17 104.
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The Lorenz chaotic attractor is exhibited by the ODEs36

dx

dt
= 	�y − x� + �x,

dy

dt
= x�r − z� − y + �y ,

�34�
dz

dt
= xy − bz + �z,

with 	=10, r=28, and b=8 /3. Data were generated by using
a fourth-order Runge-Kutta integrator with step size dt
=0.001. Each noise term �x, �y, and �z used a fluctuation
level of �=6 and noise was added at each integration time
step. A larger fluctuation level was employed here due to the
large size of the attractor when compared with the previous
example. As before, a random initial condition was generated
and 50 000 time steps, not considered, were integrated to
remove transients. Next, a single time series of 107 time
steps was created and a sampling rate of one data point per
25 integration time steps was employed, creating a time se-
ries of �xt ,yt ,zt�.

Unlike the Rössler, where the time series of x-maxima
reveals the attractor’s low dimension, the Lorenz system is
most effectively reduced when the sequence of �zmax� is con-
sidered. Using the same technique as described for Fig. 6, a
sequence of z-maxima are collected resulting in a data set of
size N=13 311. However, when the return map is considered
in Fig. 9 a cusp map is revealed rather than the relatively
smooth map of Fig. 7.

For the Lorenz data we consider a family of binary par-
titions

P�d� = �“0 ” � x � �25,d�, “ 1 ” � x � �d,50�� �35�

parametrized by the decision point d. The minimum and
maximum values of d were chosen so that they cover the
range of observed zmax values plus a buffer.

In Fig. 10 we consider the instrument design process for
the Lorenz data. In panel �b� we plot the entropy rate h��d�
versus decision point for 400 values from d=25 to d=50, as
given in Eq. �35�. In this data set a maximum entropy rate of
h��d�=0.982 bits per symbol is found at d=38.44. As dis-
cussed with the Rössler example, the entropy rate value is
not directly comparable with the quoted positive Lyapunov
exponent of �+=0.9056 �base-e� in Ref. 37. To do this we

divide by the average time per symbol, found to be �t
=0.7512 in this case, and multiply by log 2 to produce a
base-e estimate. We find hest�0.902.

V. CONCLUSION

We analyzed the degree of randomness generated by de-
terministic chaotic systems with a small amount of additive
noise. Appealing to the well developed theory of symbolic
dynamics, we demonstrated that this required a two-step pro-
cedure: first, the careful design of a measuring instrument
and, second, effective model-order inference from the result-
ing data stream. Two modeling principles emerged. The in-
strument should be designed to be maximally informative
and the model inference should produce the most compact
description in the model class. In carrying these steps out an
apparent conflict appeared: in the first step of instrument
design, the entropy rate was maximized; in the second, it was
minimized. Moreover, it was seen that instrument design
must not be simultaneously combined with model inference.
In fact, treating instrument design as part of the model infer-
ence process leads to nonsensical results, such as using a
trivial decision point that labels all data as a 0.

We suggest that these modeling principles can be applied
to other instrument-model combinations, including those ap-
propriate for higher-dimensional time series. In principle, an
instrument is any classification method. For example, neural
networks, clustering algorithms, or genetic algorithms can be
employed to discretely partition a time series. The model of
the resulting symbolic data stream can then be used to moni-
tor the effectiveness of the instrument and to estimate the

FIG. 9. The Lorenz map extracted from the z-dynamics of the Lorenz at-
tractor. For this plot a noise level of �=6 was applied to each coordinate. A
noisy cusp map is associated with this attractor.

FIG. 10. The instrument design process for the Lorenz attractor at 	=10,
r=28, and b=8 /3. Panel �b� shows the estimated entropy rate h��d� vs
model order d for noise level �=6. Panel �a� plots the selected model order
vs decision point.
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underlying dynamical system’s invariant properties. The
model class used can be Markov chains, hidden Markov
models, context-trees, or �-machines, to name a few options.

The lessons learned are very simply summarized though:
Use all of the data and nothing but the data. For noisy chaos
careful measurement partition analysis coupled with Baye-
sian inference and Bayesian model comparison accomplish
both of these goals.
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