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Medium-Term Prediction of Chaos

Christopher C. Strelioff and Alfred W. Hiibler

Center for Complex Systems Research, Department of Physics, University of Illinois at Urbana-Champaign,
1110 West Green Street, Urbana, Illinois 61801, USA
(Received 25 August 2005; published 30 January 2006)

We study prediction of chaotic time series when a perfect model is available but the initial condition is
measured with uncertainty. A common approach for predicting future data given these circumstances is to
apply the model despite the uncertainty. In systems with fold dynamics, we find prediction is improved
over this strategy by recognizing this behavior. A systematic study of the Logistic map demonstrates
prediction of the most likely trajectory can be extended three time steps. Finally, we discuss application of

these ideas to the Rossler attractor.
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Development of methods for prediction and character-
ization of time series continues to be an active area of
research [1-3]. In particular, methods developed for ana-
lyzing chaotic dynamics have an increasing number of
applications. Some representative examples include pre-
diction of epileptic seizures [4], analysis of population
dynamics in ecology [5], prediction of equipment failure
[6], and understanding error in weather prediction [7,8].
Much of the fundamental research on chaotic time series
focuses on two general ideas. The first is inference of
model parameters for prediction of future data [9-11]. In
general this is effective for a short-term description of the
system. The second approach focuses on estimation of
average quantities or an invariant measure for classification
of long-term behavior [12,13].

We propose an extension of these viewpoints by incor-
porating ideas from both short- and long-term approaches.
We treat the initial condition as a measurement with un-
certainty, resulting in an initial probability density function
(PDF). While propagation of a probability density with
underlying chaotic dynamics has been studied analytically
[14,15], a direct connection to prediction of time series has
not been made to our knowledge. Our goal is to use an
understanding of PDF dynamics to identify the most prob-
able trajectory.

We find prediction of a trajectory using these ideas to be
very effective in systems with fold dynamics. Two well-
known examples of chaotic systems with this behavior are
the Logistic map [16] and Rossler attractor [17]. A perfect
model, using an initial condition measured with uncer-
tainty, will not accurately describe the most probable tra-
jectory beyond the short term in these systems. The
evolution of the initial PDF will develop new peak(s) due
to the fold dynamics. These peaks are generally not related
to images of the measured value and prediction of a
trajectory begins to fail. Recognition of this effect is the
key to extending prediction of a trajectory into the
medium-term regime.

This Letter is organized as follows. First, we describe a
general one-dimensional map and the properties necessary
to produce fold dynamics. Next, we introduce a model of
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measurement with uncertainty which produces an initial
PDF. We then consider evolution of an ensemble of trajec-
tories consistent with this measurement. This material
motivates the proposed prediction method and a systematic
numerical study of our approach verifies its effectiveness.
Finally, the extension of these ideas to higher dimensional
systems is discussed. In particular, we discuss the applica-
tion of the proposed method to coupled Logistic maps and
the Rossler attractor.

As an illustration of our method, we focus on a
1-dimensional map

Xn+1 :f(xn’ a)- (1)

To investigate fold dynamics we require f(x, a) be dif-
ferentiable on its domain with one or more critical points
x., where f'(xi,a) =0 and f"(xi,a) # 0. Given these
properties, new peaks in the PDF will always be associated
with images of the critical point(s). As an example of a
map with these properties, we introduce the nonhyperbolic
Logistic map f(x, a) = ax(1 — x), where a € [0, 4] and
x € [0, 1]. For this map we have f'(x,a) =0 at x, =
1/2, and f"(x,, a) = —2a.

The first step in prediction is specification of an initial
condition. We propose the following model for measure-
ment. The relationship between the true initial state x and
the measured value m is given by m = x + r. The uncer-
tainty in the measurement is reflected by r, with probability
density p(r). We will use the normal distribution with
mean zero and small variance. This choice is designed to
model random, nonsystematic uncertainty. The resulting
form is a distribution consistent with the measured value
and type of uncertainty assumed.

The range of possible trajectories which can be followed
by an initial condition with uncertainty is investigated by
constructing an ensemble. The first step is to generate a set
of n, initial conditions {x;|j = 0,1, ..., n, — 1}, consistent
with the type of measurement uncertainty assumed above.
The time evolution of each x; with Eq. (1) is used to
produce the set of possible trajectories {f(”)(xj, a)}. We
use the notation f"(x, a) to indicate n applications of
the map to x.

© 2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.96.044101

PRL 96, 044101 (2006)

PHYSICAL REVIEW LETTERS

week ending
3 FEBRUARY 2006

A histogram is constructed from the ensemble to provide
a coarse-grained approximation of the PDF p,(x). The
region of interest is divided into n, equally sized bins
labeled B; = [xpin + iW;, xpin + (i + 1)W,), where i =
0,1,...,n, — 1. The width of each bin is W; = (X —
Xmin)/ 1y, Where x,;, and x,,,, are the minimum and maxi-
mum of {f"(x »a)} for all x; and n. In this way, the bins
cover the region of interest U;B; = [Xmin, Xmax]- The com-
plete histogram at time # is given by

n,—1
Hn(x) = Z Hn,iﬂB,- ()C), (2)
i=0
where the estimated probability density for B; at time n is
1 ng—1 -
H,; = g, (f"(x;, @)). 3)
4 ndWl ]Z(‘) i J

In the above equations 1g (x) = 1 if x € B;, and is zero
otherwise. The value given in Eq. (3) is associated with the
center of the bin x; = x,;, + (i + 1/2)W,. The path fol-
lowed by the largest fraction of the ensemble identifies the
most likely trajectory at each time step and is associated
with the bin with largest probability density, H,, ;.

Figure 1 provides an illustration of typical dynamics for
the Logistic map at a = 3.80, a value which produces
chaotic dynamics. The ensemble of initial conditions is
distributed as x; ~ N(my, ) and the values n, = 10°
and n, = 10° were used in construction of the ensemble
and histogram. In the short-term regime, n = 3 in this
example, the histogram remains approximately normal
and the most likely value for x is accurately described
by images of the measured value f"(m, a). We also
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FIG. 1. An example of evolution of an initial condition with
uncertainty. The underlying map dynamics are governed by the
Logistic map at a = 3.80, resulting in chaotic dynamics. At each
time step a histogram is shown along with the trajectory of the
initial measurement f(m, a) (gray triangle), and the most
likely trajectory (black circle). At time n =7 the error in
prediction produced by following f(my, a) is approximately
20% of the attractor size.

note the standard deviation increases with time, o, =
LF'(f* (my, a), a)| o, reflecting a growth in the uncertainty
of the most likely value. At n = 3 there is a significant
probability the measured value will be near the critical
point (a quantitative test will be introduced below). A
new peak in the histogram is created at the image of the
critical point f(x,, a), at the next time step. For time 4 =
n = 7, following this new peak accurately describes the
most likely trajectory.

The origin of the new peak can be understood by in-
troducing the Frobenius-Perron operator, which describes
the time evolution of a probability density driven by map
dynamics. For noise-free map dynamics, as described in
Eq. (1), the operator can be written

pn(f(*l)(x, a))
W= J .

The sum is over all inverses j of the map given by x,, =

“

f;fl)(xnﬂ, a). The requirements for Eq. (1) have clear
implications for the resulting evolution of the probability
density. The denominator in Eq. (4) can be equal to zero. If
the probability density overlaps a critical point at time n a
singularity will be created at time n + 1. This is the origin
of the new peak in Fig. 1. As discussed in [18], the ill-
behaved singularity in an exact mathematical treatment
appears as a smoothed peak in a histogram which reflects
measurement with finite resolution.

The key to extending prediction is to recognize cases
when the probability density near the critical point(s) is
sufficient to create a new peak. For this purpose, we define
a ratio

fxEn(f(xL,a)) dxpn+ 1 ()C)
Jsentttupa 4%Pws1(x)

Ri = ®)
This ratio compares the probability associated with a
small region near the image of the critical point, which we
label n(f(x., a)), to the probability in a small region near
the image of the current most probable state n(f(u,, a)).
Motivated by the observations in Fig. 1 and knowledge
of the probability density dynamics given in Eq. (4), we
propose the approximation p,(x) = N(x; w,, o,). This is
not meant to be an accurate representation of the true
probability density. Rather, this approximation serves as
a tool for recognition of folds which will create new peaks.
In this spirit, the dynamics of the most likely point w,, and
standard deviation of the density o, are given by

flmya) R, <1
fxl,a) R, =1,
Opr1 = |fl(1u’n’ a)la-n- (6b)

We set the initial values to reflect the measurement with
uncertainty, uo = my and o} reflecting the variance in

p(r). We expect that this approximation is only effective
in the short- and medium-term regimes, reflected by a

fone1 = { (62)
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small value for o,. In practice, the presence of many
pronounced peaks in the histogram reflects the end of
meaningful trajectory prediction.

For application of Eq. (6), a reasonable approximation
for R, must be found. We consider a linear expansion of
Eq. (1) about the current most likely point, f(x,a) =
f(/un: Cl) + ()C - :U’n)fl(lun’ a) + @((x - Iu'n)z) The
probability in the region n(f(u,, @) = [f(@, a) —
Ax/2, f(u,, a) + Ax/2] can be found by assuming uni-
form density at the preimage of the region of interest
FV[n(f(m, a)), al, and invoking conservation of proba-
bility. Under these assumptions, we find the denominator
of Eq. (5) is approximately (p,(1,)Ax)/|f' (1, @)l.

Near one of the critical points, a quadratic expansion of
Eq. (1) must be used, f(x,a)= f(xi, a)+ 1/2(x —
x1)2f"(xL, a) + O((x — x%)3). Next, we consider the proba-
bility associated with the neighborhood n(f(x, a)). If x. is
a local maxima, this region is n(f(x%, a)) = [f(x., a) —
Ax, f(x., a)]. Making the same approximations as above,
we find the numerator in Eq. (5) is approximately

2/Q2Ax)/1f"(xL, a)lp,(x.). Combining these results, we

obtain
I ~ / 2 pn(xé)
o = 2 b N G i)

In application of this result, Ax should be set equal to
measurement resolution in experiment and bin size in
ensemble simulation. We also employ the approximation
discussed above, p,(x) = N(x; w,, 0,).

One hundred ensemble simulations were performed to
test the effectiveness of Eqgs. (6) and (7) using the Logistic
map. For each simulation a uniform random value on the
unit interval was generated, x, = rand[0, 1]. Next, the map
was applied for 500 time steps to ensure a typical value on
the attractor and the measured value set, my = 5% (x,, a).
Finally, a set of n;, = 2 X 10° initial conditions was gen-
erated using a normal distribution, x; ~ N(my, o), where
oo =5X%X1073.

At each time step the most likely trajectory, correspond-
ing to the bin with the largest probability density as given
in Eq. (3), is obtained and given the value 4, = x;. For our
purposes, the value of £, is considered to be the true most
likely trajectory. Two methods of predicting this value are
considered. We track the image of the initial most likely
point £ (my, a), and the results of our method u,, as given
in Eq. (6a).

We define two values which provide a numerical mea-
sure of the prediction accuracy

A;, = —logyolf™(mg, a) — h,| (8a)
Am,n = _10g10|Mn - hnl (Sb)

A, , describes the accuracy obtained by iterating the mea-
sured value with a perfect model and A, , the accuracy
from application of Eq. (6). In this form, these values
reflect the number of decimal places of accuracy for each

approach. As a result, larger values reflect a more accurate
prediction.

Figure 2(a) provides the results of 100 simulations of the
Logistic map at a = 3.80. Only data for post spike time,
which starts when the first fold occurs in each simulation,
are provided. Before the first fold (not shown), the predic-
tions for £ (my, a) and u, are exactly the same. A value
near 4 for either A;, or A, , demonstrates prediction
accuracy representative of the histogram resolution. For
each prediction method, the median accuracy and bars
which show the (10th, 90th) percentiles are provided.
The results demonstrate increased prediction accuracy for
the proposed method, A, , = A;,,, for three time steps in
87 of 100 trials conducted.

In Fig. 2(b), we consider the presence of dynamical
noise by modifying Eq. (1) to read x,; = f(x,, a) + &,,
where &, ~ N(0, o). As in Fig. 2(a), we consider the
Logistic map at a = 3.80. Although this method was not
expressly designed to handle dynamical noise, the results
of 100 simulations at each value of o demonstrate in-
creased prediction accuracy. Only when 60 is approxi-
mately 13% of the attractor size does the proposed
method not provide a benefit.

Finally, we consider application of these ideas to pre-
diction of higher dimensional maps and ordinary differen-
tial equations. Maps will have fold dynamics when the
determinant of their Jacobian can be equal to zero.
Weakly coupled Logistic maps, which have multiple posi-
tive Lyapunov exponents, is a convenient example. Each of
the coupled maps can fold independently or simulta-
neously. For effective application of this method, all pos-
sible combinations of folds should be found and a set of
ratios similar to Eq. (5) derived. Although more complex,
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FIG. 2. Prediction accuracy of the proposed algorithm. Post
spike time n = 1 corresponds to the first fold in the probability
density. (a) Data provided show the results for prediction without
noise. The median accuracy with bars which indicate the (10th,
90th) percentiles are provided. (b) Median prediction accuracy is
provided for various levels of dynamical noise.
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FIG. 3. An example of folding of the probability density in the
Rossler attractor. Each time x reaches a local maximum in its
dynamics a histogram of the ensemble is shown. The most likely
trajectory (black circle) and the path of the initial measurement
(gray triangle) are also provided.

no fundamentally new ideas are needed to understand this
example.

For application to ordinary differential equations we
consider the return map generated by the sequence of
maxima from one of the variables, often called the
Lorentz map. As an example we introduce the Rossler
attractor, given by the equations dx/dt= —y — z,
dy/dt = x + ay, and dz/dt = b + (x — ¢)z. If we con-
sider the sequence of maxima in the x dynamics, we find
the return map approximates the unimodal properties re-
quired of Eq. (1) and we expect to observe folding.

In Fig. 3 we see the evolution of an ensemble of
50000 trajectories obtained by 4th order Runge-Kutta
with values a = 0.2, b = 0.2, and ¢ = 5.7. Each time the
x dynamics reaches a maxima, a histogram is created from
the ensemble. Folding dynamics are clearly present and we
note the most likely trajectory and the evolution of the
initial measured value do not agree beyond the short term.
We expect application of the methods we have introduced
to extend prediction in this case as well.

In this Letter we have demonstrated that knowledge of
ensemble dynamics can be used to extend prediction when
there is uncertainty in measurement of the initial condition.

A fold can be detected and the predicted trajectory adjusted
appropriately. Application to the Logistic map demon-
strates the effectiveness of this method and preliminary
results using the Rossler attractor demonstrate the potential
for application of these ideas to ordinary differential
equations.
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