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Markov chains are a natural and well understood tool for describing one-dimensional patterns in time or
space. We show how to infer kth order Markov chains, for arbitrary k, from finite data by applying Bayesian
methods to both parameter estimation and model-order selection. Extending existing results for multinomial
models of discrete data, we connect inference to statistical mechanics through information-theoretic �type
theory� techniques. We establish a direct relationship between Bayesian evidence and the partition function
which allows for straightforward calculation of the expectation and variance of the conditional relative entropy
and the source entropy rate. Finally, we introduce a method that uses finite data-size scaling with model-order
comparison to infer the structure of out-of-class processes.
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I. INTRODUCTION

Statistical inference of models from small data samples is
a vital tool in the understanding of natural systems. In many
problems of interest data consists of a sequence of letters
from a finite alphabet. Examples include analysis of se-
quence information in biopolymers �1,2�, investigation of
one-dimensional spin systems �3�, modeling of natural lan-
guages �4�, and coarse-grained representations of chaotic dy-
namics �5,6�. This diversity of potential application has re-
sulted in the development of a variety of models for
describing discrete-valued data series.

We consider the kth order Markov chain model class
which uses the previous k letters in a sequence to predict the
next letter. Inference of Markov chains from data has a long
history in mathematical statistics. Early work focused on
maximum likelihood methods for estimating the parameters
of the Markov chain �7–9�. This work often assumed a given
fixed model order. It also typically relied on the assumed
asymptotic normality of the likelihood when estimating re-
gions of confidence and when implementing model compari-
son. As a result, the realm of application has been limited to
data sources where these conditions are met. One conse-
quence of these assumptions has been that data sources
which exhibit forbidden words, symbol sequences which are
not allowed, cannot be analyzed with these methods. This
type of data violates the assumed normality of the likelihood
function.

More recently, model comparison in the maximum likeli-
hood approach has been extended using various information
criteria. These methods for model selection are based on
extensions of the likelihood ratio and allow the comparison
of more than two models at a time. The most widely used of

these methods are Akaike’s information criteria �AIC� �10�
and the Bayesian information criteria �BIC� �11�. Although
the latter is called Bayesian, it does not employ Bayesian
model comparison in the ways we will present here. In ad-
dition to model selection using information criteria, methods
from the information theory and neural network communities
have also been developed. Two of the most widely employed
are minimum description length �MDL� �12� and structural
risk minimization �13�. It has been shown that MDL and
Bayesian methods obtain similar results in some situations
�14�. However, to the best of our knowledge, structural risk
minimization has not been adapted to Markov chain infer-
ence.

We consider Bayesian inference of the Markov chain
model class, extending previous results �2,4,15,16�. We pro-
vide the details necessary to infer a Markov chain of arbi-
trary order, choose the appropriate order �or weight orders
according to their probability�, and estimate the data source’s
entropy rate. The latter is important for estimating the intrin-
sic randomness and achievable compression rates for an in-
formation source �17�. The ability to weight Markov chain
orders according their probability is also unique to Bayesian
methods and unavailable in the model selection techniques
discussed above.

In much of the literature just cited, steps of the inference
process are divided into �i� point estimation of model param-
eters, �ii� model comparison �hypothesis testing�, and �iii�
estimation of functions of the model parameters. Here we
will show that Bayesian inference connects all of these steps,
using a unified set of ideas. Parameter estimation is the first
step of inference, model comparison a second level, and es-
timation of the entropy rate a final step, intimately related to
the mathematical structure underlying the inference process.
This view of connecting model to data provides a powerful
and unique understanding of inference not available in the
classical statistics approach to these problems. As we dem-
onstrate, each of these steps is vital and implementation of
one step without the others does not provide a complete
analysis of the data-model connection.
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The combination of inference of model parameters, com-
parison of performance across model orders, and estimation
of entropy rates provides an effective tool for understanding
Markov chain models themselves. Remarkably, this is true
even when the generating data source is outside of the Mar-
kov chain model class. Model comparison provides a sense
of the structure of the data source, whereas estimates of the
entropy rate provide a description of the inherent random-
ness. Bayesian inference, information theory, and tools from
statistical mechanics presented here touch on all of these
issues within a unified framework.

We develop this as follows, assuming a passing familiar-
ity with Bayesian methods and statistical mechanics. First,
we discuss estimation of Markov chain parameters using
Bayesian methods, emphasizing the use of the complete mar-
ginal posterior density for each parameter, rather than point
estimates with error bars. Second, we consider selection of
the appropriate memory k given a particular data set, dem-
onstrating that a mixture of orders may often be more appro-
priate than selecting a single order. In this way, we present a
thoroughgoing Bayesian approach to the inference problem.
These first two parts exploit different forms of Bayes’ theo-
rem to connect data and model.

Third, we consider the mathematical structure of the evi-
dence �or marginal likelihood� and draw connections to sta-
tistical mechanics. In this discussion, we present a method
for estimating entropy rates by taking derivatives of a parti-
tion function formed from elements of each step of the infer-
ence procedure. Last, we apply these tools to three example
information sources of increasing complexity. The first ex-
ample belongs to the Markov chain model class, but the
other two are examples of hidden Markov models �HMMs�
that fall outside of that class. We show that the methods
developed here provide a powerful tool for understanding
data from these sources, even when they do not belong to the
model class being assumed.

II. INFERRING MODEL PARAMETERS

In the first level of Bayesian inference we develop a sys-
tematic relation between the data D, the chosen model M,
and the vector of model parameters �. The object of interest
in the inference of model parameters is the posterior prob-
ability density P�� �D ,M�. This is the probability of the
model parameters given the observed data and chosen model.
To find the posterior we first consider the joint distribution
P�� ,D �M� over the data and model parameters given that
one has chosen model M. This can be factored in two ways:
P�� �D ,M�P�D �M� or P�D �� ,M�P�� �M�. Setting these
equal and solving for the posterior we obtain Bayes’ theo-
rem:

P���D,M� =
P�D��,M�P���M�

P�D�M�
. �1�

The prior P�� �M� specifies a distribution over the model
parameters. We take a pragmatic view of the prior, consider-
ing its specification to be a statement of assumptions about
the chosen model class. The likelihood P�D �� ,M� describes

the probability of the data given the model. Finally, the evi-
dence �or marginal likelihood� P�D �M� is the probability of
the data given the model. In the following sections we de-
scribe each of the quantities in detail on our path to giving an
explicit expression for the posterior.

A. Markov chains

The first step in inference is to clearly state the assump-
tions which make up the model. This is the foundation for
writing down the likelihood of a data sample and informs the
choice of prior. We assume that a single data set D of length
N is the starting point of the inference and that it consists of
symbols st from a finite alphabet A:

D = s0s1 . . . sN−1, st � A . �2�

We introduce the notation s�t
k to indicate a length-k sequence

of letters ending at position t: e.g., s�4
2=s3s4.

The kth order Markov chain model class assumes a finite
memory and stationarity in the data source. The finite
memory condition, a generalization of the conventional Mar-
kov property, can be written

p�D� = p�s�k−1
k � �

t=k−1

N−2

p�st+1�s�t
k� , �3�

thereby factoring into terms that depend only on the previous
word of length k. The stationarity condition can be expressed

p�st�s�t−1
k � = p�st+m�s�t+m−1

k � �4�

for any �t ,m�. Equation �4� results in a simplification of the
notation since we no longer need to track the position index:
p�st=s �s�t−1

k =s�k�= p�s �s�k� for any t. Given these two assump-
tions, the model parameters of the kth order Markov chain
Mk are

�k = �p�s�s�k�:s � A,s�k � Ak� . �5�

A normalization constraint is placed on them: 	s�Ap�s �s�k�
=1 for each word s�k.

The next step is to write down the elements of Bayes’
theorem specific to the kth order Markov chain.

B. Likelihood

Given a sample of data D=s0s1 . . .sN−1, the likelihood can
be written down using the Markov property of Eq. �3� and
the stationarity of Eq. �4�. This results in the form

P�D��k,Mk� = �
s�A

�
s�k�Ak

p�s�s�k�n�s�ks�, �6�

where n�s�ks� is the number of times the word s�ks occurs in
the sample D. For future use, we also introduce notation for
the number of times a word s�k has been observed n�s�k�
=	s�An�s�ks�. We note that Eq. �6� is conditioned on the start
sequence s�k−1

k =s0s1 . . .sk−1.

C. Prior

The prior P�� �M� is used to specify assumptions about
the model to be inferred, before the data is considered. Here
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we consider conjugate priors for which the posterior distri-
bution has the same functional form as the prior. This allows
us to derive exact expressions for many quantities of interest
in inference. This provides a powerful tool for understanding
what information is gained during inference and, especially,
model comparison.

The exact form of the prior is determined by our assign-
ment of hyperparameters ��s�ks� for the prior that balance the
strength of the modeling assumptions encoded in the prior
against the weight of the data. For a kth order Markov chain,
there is one hyperparameter for each word s�ks, given the
alphabet under consideration. A useful way to think about the
assignment of values to the hyperparameters is to relate them
to fake counts ñ�s�ks�, such that ��s�ks�= ñ�s�ks�+1. In this way,
the ��s�ks� can be set to reflect knowledge of the data source
and the strength of these prior assumptions can be properly
weighted in relation to the real data counts n�s�ks�.

The conjugate prior for Markov chain inference is a prod-
uct of Dirichlet distributions, one for each word s�k. It restates
the finite-memory assumption from the model definition:

P��k�Mk� = �
s�k�Ak
 ����s�k��

�
s�A

����s�ks��
��1 − 	

s�A
p�s�s�k��

� �
s�A

p�s�s�k���s�ks�−1 . �7�

�See Appendix A for relevant properties of Dirichlet distri-
butions.� The prior’s hyperparameters ���s�ks�� must be real
and positive. We also introduce the more compact notation
��s�k�=	s�A��s�ks�. The function ��x�= �x−1�! is the well
known gamma function. The � function constrains the model
parameters to be properly normalized: 	s�Ap�s �s�k�=1 for
each s�k.

Given this functional form, there are at least two ways to
interpret what the prior says about the Markov chain param-
eters �k. In addition to considering fake counts ñ�·�, as dis-
cussed above, we can consider the range of fluctuations in
the estimated p�s �s�k�. Classical statistics would dictate de-
scribing the fluctuations via a single value with error bars.
This can be accomplished by finding the average and vari-
ance of p�s �s�k� with respect to the prior. The result is

Eprior�p�s�s�k�� =
��s�ks�
��s�k�

, �8�

Varprior�p�s�s�k�� =
��s�ks����s�k� − ��s�ks��

��s�k�2�1 + ��s�k��
. �9�

A second method, more in line with traditional Bayesian
estimation, is to consider the marginal distribution for each
model parameter. For a Dirichlet distribution, the marginal
for any one parameter will be a Beta distribution. This ana-
lytic form for the marginal density is one of the benefits of
choosing the conjugate prior. With this knowledge, a prob-
ability density can be provided for each Markov chain pa-

rameter given a particular setting for the hyperparameters
��s�ks�. In this way, the prior can be assigned and analyzed in
substantial detail.

A common assumption in model inference is to assume all
things are a priori equal. This can be expressed by assigning
��s�ks�=1 for all s�k�Ak and s�A, adding no fake counts
ñ�s�ks�. This assignment results in a uniform prior distribution
over the model parameters and a prior expectation:

Eprior�p�s�s�k�� = 1/�A� . �10�

D. Evidence

Given the likelihood and prior derived above, the evi-
dence P�D �M� is seen to be a simple normalization term in
Bayes’ theorem. In fact, the evidence provides the probabil-
ity of the data given the model Mk and so plays a fundamen-
tal role in model comparison and, in particular, in selecting
model order. Formally, the definition is

P�D�Mk� =� d�kP�D��k,Mk�P��k�Mk� , �11�

where we can see that this term can be interpreted as an
average of the likelihood over the prior distribution. Apply-
ing this to the likelihood in Eq. �6� and the prior in Eq. �7�
produces

P�D�Mk� = �
s�k�Ak � ����s�k��

�
s�A

����s�ks��

�
s�A

��n�s�ks� + ��s�ks��

��n�s�k� + ��s�k�� � .

�12�

As we will see, this analytic expression results in the ability
to make useful connections to statistical mechanics tech-
niques when estimating entropy rates. This is another benefit
of choosing the conjugate prior with known properties.

E. Posterior

Using Bayes’ theorem Eq. �1�, the results of the three
previous sections can be combined to obtain the posterior
distribution over the parameters of the kth order Markov
chain. One finds

P��k�D,Mk� = �
s�k�Ak
 ��n�s�k� + ��s�k��

�
s�A

��n�s�ks� + ��s�ks��

� ��1 − 	
s�A

p�s�s�k�� �
s�A

p�s�s�k�n�s�ks�+��s�ks�−1 .

�13�

As discussed in the selection of the prior, the resulting form
is a Dirichlet distribution with modified parameters. Again,
this is a result of choosing the conjugate prior: cf. the forms
of Eq. �7� and Eq. �13�.
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From the form in Eq. �13�, the estimation of the model
parameters p�s �s�k� and the uncertainty of these estimates can
be given using the known properties of the Dirichlet distri-
bution. As with the prior, there are two main ways to under-
stand what the posterior tells us about the fluctuations in the
estimated Markov chain parameters. The first uses a point
estimate with “error bars.” We obtain these from the mean
and variance of the p�s �s�k� with respect to the posterior, find-
ing

Epost�p�s�s�k�� =
n�s�ks� + ��s�ks�
n�s�k� + ��s�k�

, �14�

Varpost�p�s�s�k�� =
n�s�ks� + ��s�ks�
�n�s�k� + ��s�k��2

�
�n�s�k� + ��s�k�� − �n�s�ks� + ��s�ks��

�n�s�k� + ��s�k� + 1�
.

�15�

This is the posterior mean estimate �PME� of the model
parameters.

A deeper understanding of Eq. �14� is obtained through a
simple factoring:

Epost�p�s�s�k�� =
1

n�s�k� + ��s�k�
�n�s�k��n�s�ks�

n�s�k�
� + ��s�k�

����s�ks�
��s�k�

�� , �16�

where n�s�ks� /n�s�k� is the maximum likelihood estimate
�MLE� of the model parameters and ��s�ks� /��s�k� is the prior
expectation given in Eq. �8�. In this form, it is apparent that
the posterior mean estimate is a weighted sum of the MLE
and prior expectation. As a result, we can say that the poste-
rior mean and maximum likelihood estimates converge to the
same value for n�s�k����s�k�. Only when the data is scarce, or
the prior is set with strong conviction, does the Bayesian
estimate add corrections to the MLE.

A second method for analyzing the resulting posterior
density is to consider the marginal density for each param-
eter. As discussed with the prior, the marginal for a Dirichlet
distribution is a Beta distribution. As a result, we can either
provide regions of confidence for each parameter or simply
inspect the density function. The latter provides much more
information about the inference being made than the point
estimation given above. In our examples, to follow shortly,
we give plots of the marginal posterior density for various
parameters of interest. This will demonstrate the wealth of
information this method provides.

Before we move on, we make a final point regarding the
estimation of inference uncertainty. The form of the posterior
is not meant to reflect the potential fluctuations of the data
source. Instead, the width of the distribution reflects the pos-
sible Markov chain parameters which are consistent with ob-
served data sample. These are distinct notions and should not
be conflated.

F. Predictive distribution

Once we have an inferred model, a common task is to
estimate the probability of a new observation D�new� given
the previous data and estimated model. This is implemented
by taking an average of the likelihood of the new data

P�D�new���k,Mk� = �
s�k�Ak,s�A

p�s�s�k�m�s�ks� �17�

with respect to the posterior distribution �18�:

P�D�new��D,Mk� =� d�kP�D�new���k,Mk�P��k�D,Mk� .

�18�

We introduce the notation m�s�ks� to indicate the number of
times the word s�ks occurs in D�new�. This method has the
desirable property, compared to point estimates, that it takes
into account the uncertainty in the model parameters �k as
reflected in the form of the posterior distribution.

The evaluation of Eq. �18� follows the same path as the
calculation for the evidence and produces a similar form; we
find

P�D�new��D,Mk� = �
s�k�Ak � ��n�s�k� + ��s�k��

�
s�A

��n�s�ks� + ��s�ks��

�

�
s�A

��n�s�ks� + m�s�ks� + ��s�ks��

��n�s�k� + m�s�k� + ��s�k�� � .

�19�

III. MODEL COMPARISON

With the ability to infer a Markov chain of a given order
k, a common-sense question is to ask how do we choose the
correct order given a particular data set? Bayesian methods
have a systematic way to address this through the use of
model comparison.

In many ways, the procedure is analogous to inferring
model parameters themselves, which we just laid out, though
at a higher level of modeling. We start by enumerating the
set of model orders to be compared: M= �Mk�kmin

kmax, where
kmin and kmax correspond to the minimum and maximum or-
der to be inferred, respectively. Although we will not con-
sider an independent, identically distributed �IID� model
�memoryless: k=0� here, we do note that this could be in-
cluded using the same techniques described below.

We start with the joint probability P�Mk ,D �M� of a par-
ticular model Mk�M and data sample D, factoring it in two
ways following Bayes’ theorem. Solving for the probability
of a particular model we obtain

P�Mk�D,M� =
P�D�Mk,M�P�Mk�M�

P�D�M�
, �20�

where the denominator is the sum given by
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P�D�M� = 	
Mk��M

P�D�Mk�,M�P�Mk��M� . �21�

The probability of a particular model in the set under con-
sideration is driven by two components: The evidence
P�D �Mk ,M�, derived in Eq. �12�, and the prior over model
orders P�Mk �M�.

Two common priors in model comparison are �i� all mod-
els are equally likely and �ii� models should be penalized for
the number of free parameters used to fit the data. In the first
instance, P�Mk �M�=1/ �M� is the same for all orders k.
However, this factor cancels out because it appears in both
the numerator and denominator. As a result, the probability
of models using this prior becomes

P�Mk�D,M� =
P�D�Mk,M�

	
Mk��M

P�D�Mk�,M�
. �22�

In the second case, a common penalty for the number of
model parameters is

P�Mk�M� =
exp�− �Mk��

	
Mk��M

exp�− �Mk���
, �23�

where �Mk� is the number of free parameters in the model.
For a kth order Markov chain, the number of free parameters
is

�Mk� = �A�k��A� − 1� , �24�

where �A� is the size of the alphabet. Thus model probabili-
ties under this prior take on the form

P�Mk�D,M� =
P�D�Mk,M�exp�− �Mk��

	
Mk�

P�D�Mk�,M�exp�− �Mk���
. �25�

We note that the normalization sum in Eq. �23� cancels be-
cause it appears in both the numerator and denominator of
the above equation.

Bayesian model comparison has a natural Occam’s razor
in the model comparison process �18�. This means there is a
natural preference for smaller models even when a uniform
prior over model orders is applied. In this light, a penalty for
the number of model parameters can be seen as a very cau-
tious form of model comparison. Both of these priors, Eq.
�22� and Eq. �25�, will be considered in the examples.

A note is in order on computational implementation. In
general, the resulting probabilities can be extremely small,
easily resulting in numerical underflow if the equations are
not implemented with care. As mentioned in �16�, computa-
tion with extended logarithms can be used to alleviate these
concerns.

IV. INFORMATION THEORY, STATISTICAL MECHANICS,
AND ENTROPY RATES

An important property of an information source is its en-
tropy rate h�, which indicates the degree of intrinsic random-

ness and controls the achievable compression of its realiza-
tions. A first attempt at estimating a source’s entropy rate
might consist of plugging a Markov chain’s estimated model
parameters into the known expression for h� �17�. However,
this does not accurately reflect the posterior distribution de-
rived above. This observation leaves two realistic alterna-
tives. The first option is to sample model parameters from
the posterior distribution. These samples can then be used to
calculate a set of entropy-rate estimates that reflect the un-
derlying posterior distribution. A second option, which we
take here, is to adapt methods from type theory �17� and
statistical mechanics previously developed from IID models
�19� to Markov chains. To the best of our knowledge, this is
the first time these ideas have been extended to inferring
Markov chains; although cf. �20�.

In simple terms, type theory shows that the probability of
an observed sequence can be written in terms of the
Kullback-Leibler �KL� distance and the entropy rate. When
applied to the Markov chain inference problem the resulting
form suggests a connection to statistical mechanics. For ex-
ample, we will show that averages of the KL distance and
entropy rate with respect to the posterior are found by taking
simple derivatives of a partition function.

The connection between inference and information theory
starts by considering the product of the prior Eq. �7� and
likelihood Eq. �6�:

P��k�Mk�P�D��k,Mk� = P�D,�k�Mk� . �26�

This forms a joint distribution over the observed data D and
model parameters �k given the model order Mk. Denoting the
normalization constant from the prior as Z to save space, this
joint distribution is

P�D,�k�Mk� = Z�
s�k,s

p�s�s�k�n�s�ks�+��s�ks�−1. �27�

This form can be written, without approximation, in terms of
conditional relative entropies D�· � · � and entropy rate h��·�:

P�D,�k�Mk� = Z2−�k�D�Q�P�+h��Q��2+�A�k+1�D�U�P�+h��U��,

�28�

where �k=	s�k,s�n�s�ks�+��s�ks�� and the distribution of true
parameters is P= �p�s�k� , p�s �s�k��. The distributions Q and U
are given by

Q = 
q�s�k� =
n�s�k� + ��s�k�

�k
,q�s�s�k� =

n�s�ks� + ��s�ks�
n�s�k� + ��s�k�  ,

�29�

U = 
u�s�k� =
1

�A�k
,u�s�s�k� =

1

�A� . �30�

Q is the distribution defined by the posterior mean and U is
a uniform distribution. The information-theoretic quantities
used above are given by

D�Q�P� = 	
s,s�k

q�s�k�q�s�s�k�log2
q�s�s�k�
p�s�s�k�

, �31�
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h��Q� = − 	
s,s�k

q�s�k�q�s�s�k�log2 q�s�s�k� . �32�

The form of Eq. �28� and its relation to the evidence suggests
a connection to statistical mechanics: The evidence
P�D �Mk�=�d�kP�D ,�k �Mk� is a partition function Z
= P�D �Mk�. Using conventional techniques, the expectation
and variance of the “energy”

E�Q,P� = D�Q�P� + h��Q� �33�

are obtained by taking derivatives of the logarithm of the
partition function with respect to �k:

Epost�E�Q,P�� = −
1

log 2

�

��k
log Z , �34�

Varpost�E�Q,P�� =
1

log 2

�2

��k
2 log Z . �35�

The factors of log 2 in the above expressions come from the
decision to use base 2 logarithms in the definition of our
information-theoretic quantities. This results in values in bits
rather than nats �17�.

To evaluate the above expression, we take advantage of
the known form for the evidence provided in Eq. �12�. With
the definitions �k=	s�k��s�k� and

R = 
r�s�k� =
��s�k�

�k
,r�s�s�k� =

��s�ks�
��s�k�  , �36�

the negative logarithm of the partition function can be writ-
ten

− log Z = 	
s�k,s

log ���kr�s�k�r�s�s�k�� − 	
s�k

log ���kr�s�k��

+ 	
s�k

log ���kq�s�k�� − 	
s�k,s

log ���kq�s�k�q�s�s�k�� .

�37�

From this expression, the desired expectation is found by
taking derivatives with respect to �k; we find that

Epost�E�Q,P�� =
1

log 2	
s�k

q�s�k�	�0���kq�s�k��

−
1

log 2	
s�k,s

q�s�k�q�s�s�k�	�0���kq�s�k�q�s�s�k�� .

�38�

The variance is obtained by taking a second derivative with
respect to �k, producing

Varpost�E�Q,P�� = −
1

log 2	
s�k

q�s�k�2	�1���kq�s�k��

+
1

log 2	
s�k,s

q�s�k�2q�s�s�k�2

�	�1���kq�s�k�q�s�s�k�� . �39�

In both of the above the polygamma function is defined
	�n��x�=dn+1 /dxn+1 log ��x�. �For further details, consult a
reference such as �21�.�

From the form of Eq. �38� and Eq. �39�, the meaning is
not immediately clear. We can use an expansion of the n
=0 polygamma function

	�0��x� = log x − 1/2x + O�x−2� , �40�

valid for x�1, however, to obtain an asymptotic form for
Eq. �38�; we find

Epost�E�Q,P�� = H�q�s�k�q�s�s�k�� − H�q�s�k��

+
1

2�k
�A�k��A� − 1� + O�1/�k

2� . �41�

The block entropies used in Eq. �41� are defined as follows:

H�q�s�k�� = − 	
s�k

q�s�k�log2 q�s�k� , �42�

H�q�s�k�q�s�s�k�� = − 	
s�k,s

q�s�k�q�s�s�k�log2 q�s�k�q�s�s�k� ,

�43�

where the distributions �q�s�k� ,q�s �s�k�� are defined in Eq.
�29�. From this we see that the first two terms make up the
entropy rate h��Q�=H�q�s�k�q�s �s�k��−H�q�s�k�� and the last
term is associated with the conditional relative entropy be-
tween the posterior mean distribution Q and true distribution
P.

In summary, we have found the average of the conditional
relative entropy and entropy rate with respect to the posterior
density. This was accomplished by making connections to
statistical mechanics through type theory. Unlike sampling
from the posterior to estimate the entropy rate, this method
results in an analytic form which approaches h��P� as the
inverse of the data size. This method for approximating h�

also provides a computational benefit. No eigenstates have to
be found from the Markov transition matrix, allowing for the
storage of values in sparse data structures. This provides a
distinct computational advantage when large orders or alpha-
bets are considered.

Finally, it might seem awkward to use the expectation of
Eq. �33� for estimation of the entropy rate. This method was
chosen because it is the form that naturally appears in writ-
ing down the likelihood-prior combination in Eq. �28�. As a
result of using this method, most of the results obtained
above are without approximation. We were also able to show
this expectation converges to the desired value in a well be-
haved manner.

V. EXAMPLES

To explore how the above produces a robust inference
procedure, let us now consider the statistical inference of a
series of increasingly complex data sources. The first, called
the golden mean process is a first order Markov chain. The
second data source is called the even process and cannot be
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represented by a Markov chain with finite k. However, this
source is a deterministic hidden Markov model �HMM�. This
means the current state and next output symbol uniquely
determine the next state. Finally, we consider the simple non-
deterministic source, so named since it’s smallest represen-
tation is as a nondeterministic HMM. Nondeterminism here
refers to the HMM structure: The current state and next out-
put symbol do not uniquely determine the next state. �This
source is represented by an infinite 
-machine—an infinite-
state deterministic HMM �22,23�.�

The examples we have chosen may at first seem rather
simple and abstract. However, these data sources have direct
relevance to many areas of current research. For example,
the golden mean and simple nondeterministic sources appear
in binary encoding of data from the chaotic logistic map �22�
and are therefore of interest to researchers in the symbolic
dynamics of deterministic chaos �5,6�. As a second example,
we mention analysis of experimental data from single mol-
ecule experiments �24�. In particular, experiments involving
the Holliday junction appear to demonstrate Markov and hid-
den Markov dynamics in the transitions between physical
conformations �25,26�. Models of data from these experi-
ments would again be very similar in nature to the golden
mean and simple nondeterministic processes.

The golden mean, even, and simple nondeterministic pro-
cesses can all be written down as models with two internal
states—call them A and B. However, the complexity of the
data generated from each source is of markedly different
character. Our goal in this section is to consider the three
main steps in inference to analyze them. First, we consider
inference of a first-order Markov chain to demonstrate the
estimation of model parameters with uncertainty. Second, we
consider model comparison for a range of orders k. This
allows us to discover structure in the data source even
though the true model class cannot be captured in all cases.
Finally, we consider estimation of entropy rates from these
data sources, investigating how randomness is expressed in
the sources.

To investigate these processes we consider average data
counts, rather than sample counts from specific realizations,
as we want to focus specifically on the average performance
of Bayesian inference. To do this we take advantage of the
known form of the sources. Each is described by a transition
matrix T, which gives transitions between states A and B:

T = �p�A�A� p�B�A�
p�A�B� p�B�B� � . �44�

Although two of our data sources are not finite Markov
chains, the transition matrix between internal states is Mar-
kov. This means the matrix is stochastic �all rows sum to
one� and we are guaranteed an eigenstate �� with eigenvalue
one: �� T=�� . This eigenstate describes the asymptotic distri-
bution over internal states: �� = �p�A� , p�B��.

The transition matrix can be divided into labeled matrices
T�s� that contain the elements of T which output symbol s.
For our binary data sources one has

T = T�0� + T�1�. �45�

Using these matrices, the average probability of words can
be estimated for each process of interest. For example, the
probability of word 01 can be found using

p�01� = �� T�0�T�1��� , �46�

where �� is a column vector with all 1s. In this way, for any
data size N, we estimate the average count for a word of
length k+1 as

n�s�ks� = �N − k�p�s�ks� . �47�

We note that there are N−k words of length k+1 in a sample
of length N, resulting in the factor of �N−k� rather than N in
above expression. Average counts, obtained this way, will be
the basis for all of the examples to follow.

In the estimation of the true entropy rate for the examples
we use the formula

h� = − 	
v��A,B�

p�v� 	
s�A

p�s�v�log2 p�s�v� �48�

for the golden mean and even processes. In this formula,
p�s �v�=Tv·

�s� is the probability of a letter s given the state v
and p�v� is the asymptotic probability of the state v which
can be found as discussed above. For the simple nondeter-
ministic source this closed-form expression cannot be ap-
plied and the entropy rate must be found using more in-
volved methods; see �22� for further details.

A. Golden mean process: In-class modeling

The golden mean process can be represented by a simple
first-order Markov chain over a binary alphabet characterized
by a single �shortest� forbidden word 00. The defining la-
beled transition matrices for this data source are given by

T�0� = �0 1/2

0 0
�, T�1� = �1/2 0

1 0
� . �49�

Figure 1 provides a graphical representation of the corre-
sponding hidden Markov chain. Inspection reveals a simple
relation between the internal states A and B and the output
symbols 0 and 1. An observation of 0 indicates a transition to
internal state B and a 1 corresponds to state A, making this
process a Markov chain over 0s and 1s.

For the golden mean process the eigenstate is ��
= �p�A� , p�B��= �2/3 ,1 /3�. With this vector and the labeled
transition matrices any desired word count can be found as
discussed above.

A B

1|1/2 1|1

0|1/2

FIG. 1. A deterministic hidden Markov chain for the golden
mean process. Edges are labeled with the output symbol and the
transition probability: symbol � probability.
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1. Estimation of M1 parameters

To demonstrate the effective inference of the Markov
chain parameters for the golden mean process we consider
average counts for a variety of data sizes N. For each size,
the marginal posterior for the parameters p�0 �1� and p�1 �0�
is plotted in Fig. 2. The results demonstrate that the shape of
the posterior effectively describes the distribution of possible
model parameters at each N and converges to the correct
values of p�0 �1�=1/2 and p�1 �0�=1 with increasing data.

Point estimates with a variance can be provided for each
of the parameters, but these numbers by themselves can be
misleading. However, the estimate obtained by using the
mean and variance of the posterior are a more effective de-
scription of the inference process than a maximum likelihood
estimate with estimated error given by a Gaussian approxi-
mation of the likelihood alone. As Fig. 2 demonstrates, in
fact, a Gaussian approximation of uncertainty is an ineffec-
tive description of our knowledge when the Markov chain
parameters are near their upper or lower limits at 0 and 1.
Probably the most effective set of numbers to provide con-
sists of the mean of the posterior and a region of confidence.
These would most accurately describe asymmetries in the
uncertainty of model parameters. Although we will not do
that here, a brief description of finding regions of confidence
is provided in Appendix A.

2. Selecting the model order k

Now consider the selection of the appropriate order k
from golden mean realizations. As discussed above, the

golden mean process is a first-order Markov chain �k=1�. As
a result, we would expect model comparison to select this
order from the possibilities considered. To demonstrate this,
we consider orders k=1–4 and perform model comparison
with a uniform prior over orders �Eq. �22�� and with a pen-
alty for the number of model parameters �Eq. �25��.

The results of the model comparisons are given in Fig. 3.
The top panel shows the probability for each order k as a
function of the sample size, using a uniform prior. For this
prior over orders, M1 is selected with any reasonable amount
of data. However, there does seem to be a possibility to
overfit for small data size N100. The bottom panel shows
the model probability with a penalty prior over model order
k. This removes the overfitting at small data sizes and pro-
duces an offset which must be overcome by the data before
higher k is selected. This example is not meant to argue for
the penalty prior over model orders. In fact, Bayesian model
comparison with a uniform prior does an effective job using
a relatively small sample size.

3. Estimation of entropy rate

We can also demonstrate the convergence of the average
for E�Q , P�=D�Q � P�+h��Q� given in Eq. �38� to the correct
entropy rate for the golden mean process. We choose to show
this convergence for all orders k=1–4 discussed in the pre-
vious section. This exercise demonstrates that all orders
greater than or equal to k=1 effectively capture the entropy
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FIG. 2. A plot of the inference of M1 model parameters for the
golden mean process. For each data sample size N, the marginal
posterior is plotted for the parameters of interest: p�0 �1� in the top
panel and p�1 �0� in the lower panel. The true values of the param-
eters are p�0 �1�=1/2 and p�1 �0�=1.
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rate. However, the convergence to the correct values for
higher-order k takes more data because of a larger initial
value of D�Q � P�. This larger value is simply due to the
larger number of parameters for higher-order Markov chains.

In evaluating the value of D�Q � P�+h��Q� for different
sample lengths, we expect that the posterior mean estimate Q
will converge to the true distribution P. As a result, the con-
ditional relative entropy should go to zero with increasing N.
For the golden mean process, the known value of the entropy
rate is h�=2/3 bits per symbol. Inspection of Fig. 4 demon-
strates the expected convergence of the average from Eq.
�38� to the true entropy rate.

The result of our model comparison from the previous
section could also be used in the estimation of the entropy
rate. As we saw in Fig. 3, there are ranges of sample length
N where the probability of orders k=1,2 are both nonzero. In
principle, an estimate of h� should be made by weighting the
values obtained for each k by the corresponding order prob-
ability P�Mk �D ,M�. As we can see from Fig. 4, the esti-
mates of the entropy rate for k=1,2 are also very similar in
this range of N. As a result, this additional procedure would
not have a large effect for entropy-rate estimation.

B. Even process: Out-of-class modeling

We now consider a more difficult data source called the
even process. The defining labeled transition matrices are
given by

T�0� = �1/2 0

0 0
�, T�1� = �0 1/2

1 0
� . �50�

As can be seen in Fig. 5, the node-edge structure is iden-
tical to the golden mean process but the output symbols on
the edges have been changed slightly. As a result of this
shuffle, the states A and B can no longer be associated with a
simple sequence of 0s and 1s. Whereas the golden mean has
the irreducible set of forbidden words F= �00�, the even pro-
cess has a countably infinite set F= �012n+10 :n=0,1 ,2 , . . . �
�22�.

In simple terms, the even process produces blocks of 1s
which are even in length. This is a much more complicated

type of memory than we saw in the golden mean process.
For the Markov chain model class, where a word of length k
is used to predict the next letter, this would require an infinite
order k. It would be necessary to keep track of all even and
odd strings of 1s, irrespective of the length. As a result, the
properties of the even process mean that a finite Markov
chain cannot represent this data source.

This example is then a demonstration of what can be
learned in a case of out-of-class modeling. We are interested,
therefore, in how well Markov chains approximate the even
process. We expect that model comparison will select larger
k as the size of the data sample increases. Does the model
selection tell us anything about the underlying data source
despite the inability to exactly capture its properties? As we
will see, we do obtain intriguing hints of the true nature of
the even process from model comparison. Finally, can we
estimate the entropy rate of the process with a Markov
chain? As we will see, a high k is needed to do this effec-
tively.

1. Estimation of M1 parameters

In this section we consider an M1 approximation of the
even process. We expect the resulting model to accurately
capture length-2 word probabilities as N increases. In this
example, we consider the true model to be the best approxi-
mation possible by a k=1 Markov chain. From the labeled
transition matrices given above we can calculate the appro-
priate values for p�0 �1� and p�1 �0� using the methods de-
scribed above. Starting from the asymptotic distribution ��
= �p�A� , p�B��= �2/3 ,1 /3� we obtain p�0 �1�= p�10� / p�1�
=1/4 and p�1 �0�= p�01� / p�0�=1/2.

As we can see from Fig. 6 a first-order Markov chain can
be inferred without difficulty. The values obtained are ex-
actly as we found above. However, these values do not really
tell us much about the nature of the data source by them-
selves. This points to the important role of model comparison
and entropy-rate estimation in understanding this data.

2. Selecting the model order k

Now consider the selection of Markov chain order k
=1–4 for a range of data sizes N. Recall that the even pro-
cess cannot be represented by a finite-order Markov chain
over the output symbols 0 and 1. As a consequence, we
expect higher k to be selected with increasing data N, as
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FIG. 4. The convergence of Epost�E�Q , P�� to the true entropy
rate h�=2/3 bits per symbol �indicated by the gray horizontal line�
for the golden mean process. As demonstrated in Eq. �41�, the con-
ditional relative entropy D�Q � P�→0 as 1/N. This results in the
convergence of h��Q� to the true entropy rate.

A B

0|1/2 1|1

1|1/2

FIG. 5. Deterministic hidden Markov chain representation of the
even process. This process cannot be represented as a finite-order
�nonhidden� Markov chain over the output symbols 0s and 1s. The
set of irreducible forbidden words F= �012n+10 :n=0,1 ,2 , . . . � re-
flects the fact that the process generates blocks of 1s, bounded by
0s, that are even in length, at any length.
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more data statistically justifies more complex models. This is
what happens, in fact, but the way in which orders are se-
lected as we increase N provides structural information we
could not obtain from the inference of a Markov chain of
fixed order.

If we consider Fig. 7 an interesting pattern becomes ap-
parent. Orders with even k are preferred over odd. In this
way model selection is hinting at the underlying structure of
the source. This model class cannot represent the even pro-
cess in a compact way, but inference and model comparison
combined have provided useful information about the hidden
structure of the source.

In this example, we also have regions where the probabil-
ity of multiple orders k are equally probable. The sample size
at which this occurs depends on the prior over orders which
is employed. When this happens, properties estimated from
the Markov chain model class should use a weighted sum of
the various orders. In the estimation of entropy rates this is
not as critical. At sample sizes where the order probabilities
are similar, the estimated entropy rates are also similar.

3. Estimation of entropy rate

Entropy rate estimation for the even process turns out to
be a more difficult task than one might expect. In Fig. 8 we
see that Markov chains of orders 1–6 are unable to effec-
tively capture the true entropy rate. In fact, experience shows
that an order k=10 Markov chain or higher is needed to get
close to the true value of h�=2/3 bits per symbol. Note also

the factor of 20 longer realizations that are required com-
pared, say, to the golden mean example.

As discussed above, a weighted sum of Epost[D�Q � P�
+h��Q�] could be employed in this example. For the esti-
mate this is not critical since the different orders provide
roughly the same value at these points. In fact, these points
correspond to where the estimates of E�Q , P� cross in Fig. 8.
They are samples sizes where apparent randomness can be
explained by structure and increased order k.
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C. Simple nondeterministic source: Out-of-class modeling

The simple nondeterministic source adds another level of
challenge to inference. As its name suggests, it is described
by a nondeterministic HMM. Considering Fig. 9 we can see
that a 1 is produced on every transition except for the B
→A edge. This means there are many paths through the in-
ternal states that produce the same observable sequence of 0s
and 1s. The defining labeled transition matrices for this pro-
cess are given by

T�0� = � 0 0

1/2 0
�, T�1� = �1/2 1/2

0 1/2
� . �51�

Using the state-to-state transition matrix T=T�0�+T�1�, we
find the asymptotic distribution for the hidden states to be
�� = �p�A� , p�B��= �1/2 ,1 /2�. Each of the hidden states is
equally likely; however, a 1 is always produced from state A,
while there is an equal chance of obtaining a 0 or 1 from
state B.

1. Estimation of M1 parameters

Using the asymptotic distribution derived above, the pa-
rameters of an inferred first-order Markov chain should ap-
proach p�0 �1�= p�10� / p�1�=1/3 and p�1 �0�= p�01� / p�0�
=1. As we can see from Fig. 10, the inference process cap-
tures these values very effectively despite the out-of-class
data source.

2. Selecting the model order k

Here we consider the comparison of Markov chain mod-
els of orders k=1–4 when applied to data from the simple
nondeterministic source. As with the even process, we expect
increasing order to be selected as the amount of available
data increases. In Fig. 11 we see that this is exactly what
happens.

Unlike the even process, there is no preference for even
orders. Instead, we observe a systematic increase in selected
order with larger data sets. We do note that the amount of
data needed to select a higher order does seem to be larger
than for the even process. Here the distribution over words is
more important and more subtle than the support of the dis-
tribution �those words with positive probability�.

3. Estimation of entropy rate

Estimation of the entropy rate for the simple nondetermin-
istic source provides an interesting contrast to the previous
examples. As discussed when introducing the examples, this
data source is a nondeterministic HMM and the entropy rate
cannot be directly calculated using Eq. �48� �27�. However, a
value of h��0.677867 bits per symbol has been obtained
analytically in �22�.

Figure 12 shows the results of entropy-rate estimation us-
ing Markov chains of order k=1–6. These results demon-
strate that the entropy rate can be effectively estimated with
low-order k and relatively small data samples. This is an
interesting result, as we might expect estimation of the en-
tropy rate to be most difficult in this example. Instead we
find that the even process was a more difficult test case.

VI. DISCUSSION

The examples presented above provide several interesting
lessons in inference, model comparison, and estimating ran-
domness. The combination of these three ideas applied to a
data source provides information and intuition about the
structure of the underlying system, even when modeling out-
of-class processes.

In the examples of Mk estimates for each of the sources
we see that the Bayesian methods provide a powerful and
consistent description of Markov chain model parameters.
The marginal density accurately describes the uncertainty as-
sociated with these estimates, reflecting asymmetries which

A B

1|1/2 1|1/20|1/2

1|1/2

FIG. 9. A hidden Markov chain representation of the simple
nondeterministic process. This example also cannot be represented
as a finite-order Markov chain over output 0 and 1 sequences. It is
however, more complicated than the two previous examples: Only
the observation of a 0 provides the observer with information re-
garding the internal state of the underlying process; observing a 1
leaves the internal state ambiguous.
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FIG. 10. Marginal density for M1 model parameters for the
simple nondeterministic process: The curves for each data size N
demonstrate a well behaved convergence to the correct values,
p�0 �1�=1/3 and p�1 �0�=1.
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point estimation with error bars cannot capture. In addition,
the methods described in Appendix A can be used to gener-
ate regions of confidence of any type.

Although the estimates obtained for the Markov chain
model parameters were consistent with the data source for
words up to length k+1, they did not capture the true nature
of the system under consideration. This demonstrates that
estimation of model parameters without some kind of model
comparison can be very misleading. Only with the compari-
son of different orders did some indication of the true prop-
erties of the data source become clear. Without this step,

misguided interpretations are easily obtained.
For the golden mean process, a k=1 Markov chain, the

results of model comparison were predictably uninteresting.
This is a good indication that the correct model class is being
employed. However, with the even process a much more
complicated model comparison was found. In this case, a
selection of even k over odd hinted at the distinguishing
properties of the source. In a similar way, the results of
model comparison for the simple nondeterministic source se-
lected increasing order with larger N. In both out-of-class
modeling examples, the increase in selected order without
end is a good indication that the data source is not in the
Markov chain class. �A parallel technique is found in hierar-
chical 
-machine reconstruction �22�.� Alternatively, there is
an indication that very high-order dependencies are impor-
tant in the description of the process. Either way, the behav-
ior seen in model order selection gives key indications that a
more complex dynamic is at work and all results must be
treated with caution.

Next, we considered the estimation of entropy rates for
the example data sources. In two of the cases: The golden
mean process and the simple nondeterministic source short
data streams were adequate. This is not unexpected for the
golden mean, but for the SNS this might be considered sur-
prising. For the even process, the estimation of the entropy
rate was markedly more difficult. For this data source, the
countably infinite number of forbidden words makes the sup-
port of the word distribution at a given length important. As
a result, a larger amount of data and a higher-order Markov
chain are needed to find the correct estimate of randomness
from that data source. In this way, each of the steps in Baye-
sian inference allow one to separate structure from random-
ness.

Before moving onto the conclusion, we will mention two
issues of interest to researchers who wish to employ the ideas
developed here. First, we consider the analysis of a single
time series. In the examples of Sec. V we used average data
to clearly demonstrate typical behavior of the inference pro-
cedures. By way of contrast, we present the results of model
comparison for a single time series of length 1000 from the
even process in Fig. 13. In this example, we employ a prior
with a penalty for model size. �This should be compared with
the bottom panel of Fig. 7� The same preference for even
order k over odd is demonstrated in the consideration of a
single time series, where sampling fluctuations dominate.
This nontrivial example shows that the ideas developed here
can be applied in situations where average data is not avail-
able.

Finally, we compare this method to well known alterna-
tives such as hidden Markov models and 
 machines. As we
demonstrated Markov chains can be inferred in detail, allow-
ing for estimation of entropy rates even for data sources out-
side of the model class. However, the structure of the data
source is not always captured effectively. For example, a k
=10 Markov chain with 210 states can be used to estimate h�

for the even process but the most compact 2-state HMM
representation is not found. To quantify structure, or statisti-
cal complexity, in a more meaningful way methods such as

-machine reconstruction must be considered �22,28�. That
model class can exactly represent the golden mean and even
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panel shows the model comparison with a uniform prior over the
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son with a penalty for the number of model parameters. Note the
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process examples. To capture the simple nondeterministic
source the general HMM model class, without restrictions
for determinism, must be considered. Although 
-machines
and HMMs are more powerful model classes, inference tech-
niques in the style presented here are not available at this
time. A similar set of techniques for parameter estimation,
model �structure� comparison, and entropy-rate estimation
using Bayesian methods will have to be developed.

VII. CONCLUSION

We considered Bayesian inference of kth order Markov
chain models. This included estimating model parameters for
a given k, model comparison between orders, and estimation
of randomness in the form of entropy rates. In most ap-
proaches to inference, these three aspects are treated as sepa-
rate, but related endeavors. However, we find them to be
intimately related. An estimate of model parameters without
a sense of whether the correct model is being used is mis-
guided at best. Model comparison provides a window into
this problem by comparing various orders k within the model
class. Finally, estimating randomness in the form of an en-
tropy rate provides more information about the trade-off be-
tween structure and randomness. To do this we developed a
connection to the statistical mechanical partition function,
from which averages and variances were directly calculable.
For the even process, structure was perceived as randomness
and for the SNS randomness was easily estimated and struc-
ture was more difficult to find. These insights, despite the
out-of-class data, demonstrate the power of combining these
three methods into one effective tool for investigating struc-
ture and randomness in finite strings of discrete data.
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APPENDIX A

1. Dirichlet distribution

We supply a brief overview of the Dirichlet distribution
for completeness. For more information, a reference such as
�29� should be consulted. In simple terms, the Dirichlet dis-
tribution is the multinomial generalization of the Beta distri-
bution. The probability density function for q elements is
given by

Dir��pi�� =
����

�i=0

q−1
���i�

��1 − 	
i=0

q−1

pi��
i=0

q−1

pi
�i−1. �A1�

The variates must satisfy pi� �0,1� and 	i=0
q−1pi=1. The

hyperparameters ��i� of the distribution must be real and
positive. We use the notation �=	i=0

q−1�i. The average, vari-
ance, and covariance of the parameters pi are given by, re-
spectively,

E�pj� =
� j

�
, �A2�

Var�pj� =
� j�� − � j�
�2�1 + ��

, �A3�

Cov�pj,pl� = −
� j�l

�2�1 + ��
, j � l . �A4�

2. Marginal distributions

An important part of understanding uncertainty in infer-
ence is the ability to find regions of confidence from a mar-
ginal density. The marginal is obtained from the posterior by
integrating out the dependence on all parameters except for
the parameter of interest. For a Dirichlet distribution, the
marginal density is known to be a Beta distribution �29�,

Beta�pi� =
����

���i���� − �i�
pi

�i−1�1 − pi��−�i−1. �A5�

3. Regions of confidence from the marginal density

From the marginal density provided in Eq. �A5� a cumu-
lative distribution function can be obtained using the incom-
plete Beta integral:

Pr�pi  x� = �
0

x

dpi Beta�pi� . �A6�

Using this form, the probability that a Markov chain param-
eter will be between a and b can be found using Pr�a pi
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FIG. 13. A plot of model comparison, with a penalty for model
size, for a single time series of length 1000 from the even process.
Model comparison is performed on subsamples of the time series,
starting with the first 100 symbols and increasing the data size
considered in increments of 2 until the full sample is analyzed.
Although noisy, the results are consistent with the bottom panel of
Fig. 7 and demonstrate a preference for even k over odd.
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b�=Pr�pib�−Pr�pia�. For a confidence level R, be-
tween zero and one, we then want to find �a ,b� such that
R=Pr�a pib�. The incomplete Beta integral and its in-

verse can be found using computational methods; see
�30–33� for details.
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