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We investigate a definition of biological information that connects population genetics with the tools of

information theory by focusing on the distribution of genotypes found in a population. Previous

research has treated loci as non-interacting by making specific approximations in the calculation of

information-theoretic quantities. We expand earlier mathematical forms to include epistasis, or

interactions between mutations at all pairs of loci. Application of our improved measure of biological

information to evolution on two-locus, two-allele fitness landscapes demonstrates that mutual

information between loci reflects epistatic interaction of mutations. Finally, we consider four-locus,

two-allele fitness landscapes with modular structure. As modular interactions are inherently epistatic,

we demonstrate that our refined approximation provides insight into the underlying structure of these

non-trivial fitness landscapes.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Information and evolutionary theories describe seemingly
unrelated methods for the acquisition, storage and transmission
of information. On the one hand, information theory is focused on
compression of data and the effective transmission of messages
from sender to receiver over a noisy communication channel
(Shannon and Weaver, 1949). On the other hand, evolutionary
theory describes the acquisition, storage and transmission of
genetic information governed by the biological processes of
replication, heritable variation, and natural selection. A relation
between these theories can be formed by considering the
changing distribution of genotypes caused by evolutionary
processes. Information-theoretic quantities such as entropy
and mutual information that quantify properties of, and
relations between, probability distributions provide the desired
connection.

A natural measure of biological information exploits this
association by considering the difference between an observed
distribution of genotypes and a uniform distribution. The
Kullback–Leibler (KL) divergence, also known as the relative
entropy, quantifies the coding inefficiency created by assuming a
particular distribution when the true distribution is different
(Cover and Thomas, 1991). In the mathematical model of an
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infinite, asexual population to be considered here, a uniform
distribution of genotypes is presumed to be representative of
long-term evolution in an environment without selective
pressure, heterogeneous mutation rates, or other sources of
non-uniformity. The proposed measure of biological information
quantifies the inefficiency of assuming a distribution of genotypes
conforms to these assumptions of uniformity.

Although the application of information-theoretic methods to
this problem is a recent development, it is interesting to note that
this general viewpoint of evolutionary dynamics is not new.
A well-known quote attributed to R.A. Fisher captures the spirit of
the calculations in this paper: ‘‘natural selection is a mechanism
for generating an exceedingly high degree of improbability’’
(Huxley, 1958). Kimura (1961) also noted the above quote in his
paper on genetic information, where he employed the idea of a
substitutional load rather than employing the tools of information
theory. The KL divergence between an observed distribution
of genotypes and a uniform distribution uses information-
theoretic tools to quantify this ‘‘degree of improbability’’ in an
intuitive way.

Previous research on biological information has employed a
mathematical form that can be viewed as an approximation of the
proposed KL divergence (Schneider, 1997, 2000; Adami et al.,
2000; Adami and Cerf, 2000). Alternatively called biological
information, biological complexity, or physical complexity, this
research usually employed a simplifying assumption of no
interaction between mutations. Notable exceptions considered
correlations between sites in aligned DNA and RNA sequences
using mutual information (Gutell et al., 1992; Adami, 2004;
Bindewald et al., 2006). In the present work, we unify these
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approaches by using the KL divergence as a foundation for all
approximations of biological information. Application of the
proposed measures on an evolving population demonstrates that
mutual information is needed to capture the effect of epistatic
interactions.

The need for an improved measure of biological information is
motivated by a wide array of examples from experiment and
theory that demonstrate (i) the existence of epistasis and (ii) the
dramatic effects that mutational interactions can have on
evolutionary dynamics. In fact, evolution is almost trivial if there
are no epistatic interactions because each locus can be optimized
independently. There is considerable evidence of epistasis
provided by experiments in organisms including Aspergillus niger,
Escherichia coli and Drosophila melanogaster (de Visser et al., 1997;
Elena and Lenski, 1997; Whitlock and Bourguet, 2000). There is
also evidence for epistasis in RNA viruses such as vesicular
stomatitus virus and human immunodeficiency virus 1
(Michalakis and Roze, 2004; Bonhoeffer et al., 2004; Sanjuán
et al., 2004). In addition to the important biological examples,
mathematical theory and in silico evolution using self-replicating
and evolving computer programs demonstrate that interacting
mutations are fundamental to understanding evolution in rugged
fitness landscapes (Jain and Krug, 2007) and the evolution of
complex computational tasks (Lenski et al., 1999, 2003).
Table 1
Two-locus, two-allele fitness landscapes.

Selection coefficients E

sAb saB sAB

Simple fitness landscapes

FL 1 Neutral 0.0 0.0 0.0 0.0

FL 2 Beneficial locus 0.0 0.03 0.03 0.0

FL 3 Single peak 0.1 0.03 0.133 0.0

Epistatic fitness landscapes

FL 4 Negative epistasis 0.1 0.03 0.1 �0.03

FL 5 Positive epistasis 0.1 0.03 0.2 +0.06

FL 6 Fitness valley �0.1 �0.03 0.1 +0.23

FL 7 Polymorphic 0.03 0.03 0.0 �0.06

The first three fitness landscapes FL 1–FL 3 are simple and have no interacting

mutations. FL 4–FL 7 are more complex landscapes that have epistatic interactions

between mutations. Selection coefficients and epistasis are defined relative to the

reference genome s¼ ab, as described in Eqs. (2) and (3), respectively.
2. Models of evolution and biological information

Next, we consider the elements needed to define and explore
an improved approximation of biological information in detail.
First, in Section 2.1 we introduce simple fitness landscapes for
two-locus, two-allele genotypes. In addition, we define epistasis
in a quantitative way and provide an illustrative set of landscapes.
In Section 2.2 we introduce the discrete-time quasispecies
equation. This mathematical model describes mutation and
selection in an infinite population. As a result, the quasispecies
equation provides an ideal framework for developing a theory of
biological information without concern for statistical fluctuations
in finite populations. In Section 2.3 we define biological informa-
tion in terms of the KL divergence and connect the genotype
frequencies from the quasispecies equation to information-
theoretic quantities of interest. Most important, we expand
on the currently available approximations to include both
single-locus information and mutual information between loci,
corresponding to non-interacting and interacting mutations,
respectively.

2.1. Fitness landscapes and epistasis

We first consider a population of asexual, haploid organisms
evolving on a static two-locus, two-allele fitness landscape. We
denote a genome as s and the ith locus as si. The first and second
loci have possible alleles A1 ¼ fa,Ag and A2 ¼ fb,Bg, respectively,
resulting in the following set of possible genotypes:

L¼ fab,aB,Ab,ABg: ð1Þ

A fitness landscape is specified by the fitness values, w,
assigned to each of the possible genotypes. We use s¼ ab as the
reference genome in our description of the fitness landscape and
assign w(ab)¼1, which corresponds to equal birth and death rates
for the discrete-time quasispecies equation. Following Hartl and
Clark (2007), the relative fitness of another genotype s is given by
a selective value ss:

wðsÞ
wðabÞ

¼ 1þss: ð2Þ
Assignment of w(ab)¼1 for the reference genotype also means
that wðsÞ ¼ 1þss. Using these ideas, a complete fitness landscape
for two-locus, two-allele genotypes can be described by three
selective values: fsaB,sAb,sABg. We note that these selective values
can be positive, negative, or equal to zero and correspond to
beneficial, deleterious, and neutral mutations, respectively.

Given a set of selective values, we must be able to quantify the
nature of epistatic interactions in the resulting fitness landscape.
Following Bonhoeffer et al. (2004), we define epistasis relative to
the reference genotype:

E¼ ln
wðabÞwðABÞ

wðaBÞwðAbÞ
ð3aÞ

¼ ln
1þsAB

ð1þsaBÞð1þsAbÞ
: ð3bÞ

We employ natural logarithms in this definition to maintain a
connection between Malthusian fitness, m, and Darwinian fitness,
w : m¼ lnw (Orr, 2009). Non-interacting mutations have E¼0
whereas epistatic interactions between mutations can be positive
or negative. These labels correspond to pairs of mutations that are
more fit (positive epistasis) or less fit (negative epistasis)
than expected from the individual effects of the contributing
mutations.

Given the definitions of fitness landscapes and epistasis, we
can now consider some examples. In Table 1 we present a set of
seven landscapes that have a variety of interesting properties. Our
focus is the dynamics of the genotype frequencies and biological
information, starting from a population consisting of only the
reference genotype ab, and ending at the asymptotic distribution
of genotypes for that landscape.

To start, we have chosen three fitness landscapes (FL) without
epistatic interactions to provide a baseline understanding of the
dynamics. In FL 1, all selection coefficients are zero, resulting in
neutral evolution. For FL 2, a mutation to the second locus is
beneficial. Finally, FL 3 has beneficial mutations at both loci,
where the combination of these mutations is exactly what is
expected when there is no interaction between them.

Next, we constructed four fitness landscapes with epistatic
interactions. The first two examples, FL 4 and FL 5, are
modifications of the single peak landscape FL 3. For FL 4, the
combined value of the two mutations is less than expected from
their separate effects. In FL 5, the selection coefficient of the
double mutant is larger than the corresponding value without
epistasis. These fitness landscapes provide examples of negative
and positive epistasis, respectively.
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Finally, we include two examples that might seem redundant
because they are further examples of positive and negative
epistasis. However, fitness landscapes such as FL 6 are often
discussed in the context of sign epistasis, where individually
deleterious mutations combine to produce an overall benefit. This
example can also be seen as a fitness valley, where a population
must pass through a deleterious intermediate state to reach a
higher peak in the fitness landscape. Our final example, FL 7, can
be called polymorphic because genotypes Ab and aB coexist at
equal frequency in the long-term, at least given an infinite
population size. This behavior is of particular interest because we
might also expect to observe this type of sustained coexistence in
changing fitness landscapes. Although we will not consider
dynamic fitness landscapes here, it is instructive to discuss an
example with a sustained genetic polymorphism.

2.2. Discrete-time quasispecies equation

Our model of evolutionary dynamics is the discrete-time
formulation of the quasispecies equation. Originally developed by
Eigen (1971) and Eigen and Schuster (1977) to describe molecular
evolution, this mathematical model is now used as a general tool
for the description of mutation–selection dynamics (Nowak,
1992; Wilke, 2005).

The quasispecies equation describes the frequency of each
genotype s at generation t, Xðs,tÞ. Changes in these frequencies
occur through selection and mutation processes. Selection is
reflected in the fitness values assigned to each genotype. The rate
of mutation from one genotype to another is given by

Mðs,ŝÞ ¼ m
jAj�1

� �dðs,ŝÞ
ð1�mÞL�dðs,ŝÞ: ð4Þ

In the above equation m is the per-locus mutation rate, jAj is the
number of alleles per locus, L is the number of loci, and dðs,ŝÞ is
the Hamming distance between genotypes s and ŝ. For the two-
locus, two-allele examples discussed above we have jAj ¼ 2 and
L¼ 2. Combining these elements, the discrete-time version of the
quasispecies equation is given by

Xðs,tþ1Þ ¼
X
ŝAL

Mðs,ŝÞwðŝÞ
WðtÞ

Xðŝ,tÞ 8sAL, ð5aÞ

WðtÞ ¼
X
ŝAL

wðŝÞXðŝ,tÞ, ð5bÞ

where W(t) is the average fitness of the population at time t.
In many papers that employ the quasispecies equation, the

focus is on the asymptotic distribution of genotypes. In that case,
the form of Eq. (5) can be linearized and the asymptotic behavior
is given by the eigenvector corresponding to the largest
eigenvalue for the combined mutation–selection matrix (Wilke,
2005; Jain and Krug, 2007). However, our focus includes the
transient dynamics that occur during evolution from the reference
genotype to the asymptotic distribution. As a result, we iterate
Eq. (5) to obtain the desired genotype distribution at each
generation.

2.3. Biological information

Biological information is calculated using the KL divergence
between a uniform distribution, PrðsÞ ¼ jAj�L, and an observed
distribution of genotypes, Xðs,tÞ. In an effort to keep the
discussion compact, technical details of the derivation and
definitions of basic information-theoretic quantities are shown
in the Appendix. In this section we provide only a brief overview
of the derivation and present the resulting form.
Using the definition of the KL divergence provided in Eq. (C.1)
and the assumptions introduced above, the most general form for
the biological information is

Iðs,tÞ ¼ L log2jAj�Hðs,tÞ, ð6Þ

where Hðs,tÞ is the entropy of the observed genotype distribution,
defined in Eq. (B.1).

In practice it is difficult to estimate accurately the entropy of
the observed genotype distribution if the length of the genome
is large or the population size of interest is small. As a result,
previous work has approximated the observed entropy by
considering each locus individually and adding the contributions
(Schneider, 2000; Adami et al., 2000; Huang et al., 2004). This
choice results in the first approximation of the biological
information:

I1ðs,tÞ ¼
XL

i ¼ 1

Iðsi,tÞ, ð7Þ

which ignores all epistatic interactions between loci. The single-
locus information employed in this approximation is defined as

Iðsi,tÞ ¼ log2jAj�Hðsi,tÞ, ð8Þ

where Hðsi,tÞ is the Shannon entropy for the observed marginal
distribution at locus si, defined in Eq. (B.2a).

We extend the approximation of biological information
provided in Eq. (7) to include the effect of epistatic interaction
between pairs of mutations. This refinement produces

I2ðs,tÞ ¼ I1ðs,tÞþ
XL

i ¼ 1

XL

j4 i

Iðsi : sj,tÞ, ð9Þ

where Iðsi : sj,tÞ is the mutual information between locus si and
locus sj, as defined in Eq. (B.3). To be clear, the double sum in
Eq. (9) is over all unique pairs of loci. The new mutual information
terms measure correlations between the distributions of alleles at
different loci. As a result, we expect these terms to be nonzero
when epistatic interactions are present.
3. Results

In this section we apply Eqs. (7) and (9) as approximations of
the biological information. First, we consider fitness landscapes
FL 1–FL 3, which are non-epistatic. I1ðs,tÞ accurately captures the
properties of these simple landscapes because there is no mutual
information between loci. Next, we consider epistatic fitness
landscapes FL 4–FL 7. Interaction between mutations results in
mutual information between loci and requires the new approx-
imation I2ðs,tÞ to reflect accurately the biological information.
Finally, we consider four-locus, two-allele fitness landscapes
where both approximations are inexact. In all cases, we plot the
true biological information given by Eq. (6), the approximations in
Eqs. (7) and (9), and the single-locus information provided in
Eq. (8). Mutual information terms, given in Eq. (B.3), are only
shown for examples with epistasis. Consideration of the elements
that make up these approximations provides additional insight
into the features of the fitness landscape that create different
types of biological information. For all examples, we employ a
per-locus mutation rate of m¼ 10�3.

3.1. Simple fitness landscapes

We first consider FL 1, a fitness landscape with no selective
advantage for any genotype. The panels in the left-most column of
Fig. 1 show the frequencies of all genotypes, single-locus
information dynamics and the biological information and its



Fig. 1. Population dynamics and biological information on simple fitness landscapes. Dynamics of genotype frequencies and information measures are provided for fitness

landscapes FL1–FL 3. The top row plots genotype frequencies, the middle row single-locus information, and the bottom row biological information and its approximations

over time. The ordinate scales are provided on the far-left and are exactly the same for all panels in a row. The scale for the abscissa in all panels is provided at the bottom of

each column. Labels at the top of each column provide the fitness landscape under consideration. Mutual information between loci for these examples is zero at all times

(not shown in the figure).
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approximations. In panel (A) the population, which initially
consists of only s¼ ab, equilibrates to equal probability for all
genotypes. Single-locus information for both loci, shown in panel
(B), starts at one bit, reflecting the initial population state, and
decays to zero bits. The true biological information and both
approximations start at two bits and end at zero bits (Fig. 1C). This
illustration provides a baseline understanding of a fitness
landscape without biological information.

Next we consider FL 2, a fitness landscape where mutation
from allele b to B at the second locus provides a selective benefit.
However, like our first example, mutation at the first locus is
neutral and there are no interactions between mutations. The
panels in the middle column of Fig. 1 show all quantities of
interest. In panel (E), a new dynamic appears in the behavior of
the single-locus information at locus two. Information decreases
during the selective sweep of the new B allele because there are
comparable frequencies of the competing alleles. However, panels
(E) and (F) show that the long-term information value for the
second locus recovers and reflects the selective value of allele B.

Our final non-epistatic example, FL 3, is a smooth fitness
landscape where mutation at either locus provides a constant
selective benefit, regardless of the genetic background. The
dynamics of interest are shown in the right-most column of
Fig. 1. For this landscape, the benefit of the A allele is greater than
the B allele. As a result of this difference in selective value, Iðs1,tÞ
dips first in panel (H) and rises to higher long-term value than
Iðs2,tÞ. The biological information, shown in panel (I), displays
intricate dynamics that result from the sum of the single-locus
information dynamics in panel (H).
3.2. Epistatic fitness landscapes

Our first example of an epistatic fitness landscape is FL 4,
where the fitness of the double mutant is less than expected from
the individual effects of the contributing mutations. The genotype
frequencies, single-locus information, mutual information be-
tween loci, and total biological information for FL 4 are provided
in the left column of Fig. 2. In panel (B), the single-locus
information shows that the first locus has information in the
long-term, whereas the second locus has none. This difference
from the dynamics found in FL 3 reflects the equal fitness of
genotypes Ab and AB. Panel (C) illustrates a typical pattern in the
dynamics of mutual information between loci: the value peaks
during a selective sweep involving epistatic interactions and
settles to a more moderate value in the long-term. Although the
contribution of the mutual information between loci to the total
biological information is small in this example, the fact that this
value is nonzero means that the new approximation, I2ðs,tÞ,
should be employed (Fig. 2D).



Fig. 2. Population dynamics and biological information on epistatic fitness landscapes I. Dynamics of genotype frequencies and information measures are provided for

fitness landscapes FL 4 and FL 5. The top row plots genotype frequencies, the second row single-locus information, the third row mutual information, and the bottom row

biological information and its approximations over time. The ordinate scales are provided on the far-left and are exactly the same for all panels in a row. The scale for the

abscissa in all panels is provided at the bottom of each column. Labels at the top of each column provide the fitness landscape under consideration.
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In fitness landscape FL 5, the double mutant is more fit than
expected from the individual effects of substituting the A or B allele.
Plots of the genotype frequencies, single-locus information, mutual
information between loci, and complete biological information are
provided in right column of Fig. 2. The single-locus information in
panel (F) shows that the fitness effect of a mutation at the first locus
is greater than for the second locus. This behavior is similar to the
dynamics found for non-epistatic fitness landscape FL 3. However,
unlike FL 3, panel (G) reveals the nonzero mutual information
between loci that results from positive epistasis.
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The next example, FL 6, provides an illustration of sign
epistasis. Genotype ab is a local peak in the fitness landscape
whereas the double mutant, AB, is the global maximum. Genotype
frequencies, single-locus information, mutual information
between loci, and complete biological information are plotted in
the left column of Fig. 3. The genotype frequencies in panel (A)
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Fig. 3. Population dynamics and biological information on epistatic fitness landscapes
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the mutual information, plotted in panel (C), approaches one bit.
As a result of strong correlations, approximation I1ðs,tÞ
dramatically underestimates the true biological information,
shown in panel (D). Based on this example, we might expect a
large burst of mutual information between loci involved in a
move between fitness peaks.

The final two-locus, two-allele fitness landscape that we will
consider is FL 7. In this example, single mutants with respect to ab

have the same fitness, resulting in equal frequency of genotypes
Ab and aB in the long-term. The genotypes frequencies, single-
locus information, mutual information between loci, and com-
plete biological information are plotted in the right column of
Fig. 3. In panel (F) the single-locus information dynamics show a
decay close to zero bits at each locus. This apparent information
reduction results from the equal frequency of aB and Ab, creating
a maximum entropy distribution at each locus. Panel (G) shows
the mutual information between loci, which increases to
approximately 0.7 bits in the long-term. All of the long-term
information, shown in panel (H), comes in the form of correla-
tions. As a result, the new approximation I2ðs,tÞ must be used to
reflect the presence of information. The lack of single-locus
information and the high level of mutual information between
loci is a sign of a sustained genetic polymorphism.
3.3. Modular landscapes

Next, we consider a pair of four-locus, two-allele fitness
landscapes. The motivation for these final illustrations is two-fold.
First, these examples demonstrate that the behaviors observed in
the two-locus examples translate to a longer genome in
consistent ways. Second, the four-locus landscapes provide a
more demanding application of the new approximation of the
biological information. In the two-locus examples, the true
biological information was exactly equal to one or both of
the approximations, I1ðs,tÞ and I2ðs,tÞ. However, in these
four-locus fitness landscapes, the true biological information
and the two-locus approximation are not generally equal.

We present the four-locus, two-allele fitness landscapes in
Table 2. As with the two-locus examples, we employ upper and
lower case letters for the possible alleles. At the first locus,
possible alleles are A1 ¼ fa,Ag, with the rest of the genome
following a similar pattern: A2 ¼ fb,Bg, A3 ¼ fc,Cg and A4 ¼ fd,Dg.
We assign s¼ abcd to be the reference genotype and will use it as
the sole member of the starting population. As in Eq. (2), we
assign wðabcdÞ ¼ 1 and describe the fitness landscape using
selective values relative to the reference genome: wðsÞ ¼ 1þss.
Table 2
Modular four-locus, two-allele fitness landscapes.

s ss

Two-module landscape

**** 0.0

AB** 0.2

ABCD 0.44

One-module landscape

**** 0.0

ABCD 0.44

Genotypes that match the allele pattern in the s column have the selective

advantage ss given in the next column (* is treated as a wild card). Similar to the

two-locus landscapes, the selective values are relative to genotype s¼ abcd, which

has fitness one. The two-module fitness landscape has a hierarchical structure

with two genetic units providing selective benefits of sAB** ¼ 0:2 and sABCD ¼ 0:44.

The one-module landscape eliminates the benefits for AB** genotypes, resulting in

a single genetic unit consisting of all four loci.
The two-module fitness landscape requires that alleles A and B

both be present before any fitness benefit is obtained. These loci
make up the first genetic module. A further fitness benefit can be
obtained by substituting alleles C and D at the third and fourth
loci, resulting in a second module. However, the first module must
still be in place to receive the fitness benefit for the second
module. The one-module fitness landscape requires that all alleles
be changed for any fitness benefit to accrue. By way of contrast,
these examples demonstrate the advantages and limitations of
our new approximation.

Fig. 4 provides an overview of the biological information
and the various approximations for the four-locus fitness land-
scapes. Panels (A)–(C) correspond to the two-module landscape,
and panels (D)–(F) correspond to the single-module landscape. In
panel (A) of Fig. 4 we plot the true biological information as well
as the two approximations of this quantity for the two-module
example. A single dip in the biological information is apparent as
the reference genotype is replaced by the superior genotypes AB**,
and then ABCD. Although both approximations of the biological
information are quite accurate away from the selective sweep, the
new approximation is more effective during this period of greater
genetic diversity because mutual information becomes important.
The fact that the new approximation is not equal to the true
biological information demonstrates that there are non-trivial
correlations involving three or four loci in this two-module
example.

The details of the two-module example can be further
analyzed by considering the factors that make up the I2ðs,tÞ
approximation. In panel (B) we plot the single-locus information
for all four loci, and in panel (C) we show the mutual information
between pairs of loci. The values of Iðs1,tÞ and Iðs2,tÞ dip first,
reflecting their importance in the first genetic module. At the
same time, the mutual information between these loci peaks. As
we saw in our two-locus examples, this pattern is typical of a
sweep involving an epistatic interaction. A similar pattern in the
single-locus and mutual information plays out for the third
and fourth loci after the first module starts to become dominant
in the population. This ordering of events reflects the need for the
appropriate genetic background to be in place before the second
module is beneficial.

In addition to the interaction of mutations at loci within the
same genetic module, there are also effects that cross this
boundary. Mutual information across the module barrier peaks
between sweeps of the first and second modules. For example,
Iðs1 : s3,tÞ is high, but not as great as the mutual information
between loci in the same module, reflecting interaction between
modules. Also, single-locus information at the first and second
loci is greater than at the third and fourth, further reflecting the
genetic hierarchy. Combined, the elements that make up the new
approximation of the biological information provide an improved
if not quite complete picture of this non-trivial fitness landscape.

Finally, we turn to the one-module fitness landscape. This
example is of particular interest because we can contrast the
results with the two-module landscape discussed above. First, we
consider biological information and its approximations in panel
(D) of Fig. 4. As with the two-module example, both of the
approximations are very accurate in the short- and long-term.
However, the new approximation does not perform as well in this
example as in the previous one. The reason for this is simple:
strong epistatic interactions exist among more than two loci due
to the single genetic module.

Differences between the one- and two-module fitness land-
scapes become more apparent when the components of the
biological information approximations are considered. The single-
locus information values for all loci in the single-module example
dip at the same time and increase to the same long-term level



Fig. 4. Biological information on modular four-locus fitness landscapes. Dynamics of the biological information, single-locus information, and mutual information between

loci is provided for the modular four-locus, two-allele fitness landscapes. The top row plots the biological information and its approximations, the middle row single-locus

information, and the bottom row mutual information between loci over time. The ordinate scales for biological information, single-locus information, and mutual

information are provided on the far-left and are exactly the same for all panels in the row. The scale for the abscissa in all panels is provided at the bottom of each column.

Labels at the top of each column provide the fitness landscape under consideration.
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(Fig. 4E). Mutual information between all pairs of loci follows the
same pattern, peaking when the single-locus information dips
(Fig. 4F). All information moves in concert because there is only
the single module. The lack of subtleties in the timing and
magnitude of the biological information dynamics when com-
pared with the two-module fitness landscape in our previous
example provides an informative contrast. This difference reflects
the greater strength of the higher order correlations in the single-
module fitness landscape when compared with the hierarchical
nature of the two-module example.
4. Discussion

It is clear from the examples presented above that the
temporal dynamics of biological information, computed solely
from the distribution of genotypes, can provide insights into
features of the underlying fitness landscape. Elements of the
proposed approximations have natural interpretations as epistatic
and non-epistatic contributions to biological information, given
by mutual information and single-locus information terms,
respectively. As a result, the addition of mutual information
reveals epistatic interactions and modular structure that were not
captured previously. As discussed in the Introduction, there are
many examples of epistasis in biological and computational
systems, and therefore this addition will help identify and
quantify interactions between loci that contribute to evolutionary
dynamics in many populations.

It is important to consider what biological information, as we
have discussed it here, actually means. In principle, a single
genome with properly encoded genes has information about its
environment. However, information theory was constructed to
consider properties of probability distributions. This requirement
results in a choice between at least two competing ideas. The first
approach is to take a single genome of interest and generate an
artificial distribution of genotypes that reflects the local fitness
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landscape as closely as possible. An alternative is to use the
observed population distribution that reflects the processes of
mutation and selection as they happen. The former method
attempts to assign information to a single genome, whereas the
latter method attributes information to the population.

The first approach has been applied to self-replicating and
evolving computer programs in the Avida platform, where single-
locus information was considered by applying mutation–selection
balance to a group of genotypes with all possible mutations at a
single locus (Huang et al., 2004; Ofria et al., 2008). From the
resulting distribution, single-locus information was estimated
and an approximation of the biological information was obtained
using Eq. (7). In principle, this approach for estimating informa-
tion in a single genome should be fairly accurate when the chosen
genome sits on a peak in the fitness landscape. As we saw in the
examples with the four-locus genomes, approximations of the
biological information were quite accurate far away from
selective sweeps (i.e., at a local fitness peak). However, in fitness
landscapes where there is a sustained genetic polymorphism,
such as during a selective sweep, this approach provides
misleading results. In general, the presence of epistatic interac-
tions would be difficult to capture accurately without generating
huge numbers of double mutants (and even then higher-order
epistasis would be missed). In particular, creating properly
normalized probability distributions with sensible marginal
distributions (properties described in Appendix A) would be
difficult when more than one locus is considered at a time. Even in
computational environments like Avida, this becomes a restrictive
requirement.

The second approach to biological information is the one
presented in this paper. As a result of our focus on populations,
rather than individuals, the meaning of biological information is
different. We do not assign an information quantity to any single
genome, even though it may contain information about the
environment. Instead, the fitness effects of alternative genes are
reflected by their numerical representation in the population of
interest. This basis also means that population size, mutation rate,
and the nature of the fitness landscape also all play a role in the
amount and nature of the biological information. For example, a
mutation rate that exceeds the error threshold (Eigen, 1971;
Wilke, 2005) creates a diffuse distribution of genotypes even
though some might be more fit than others and limits biological
information as we define it.

In addition to the approaches discussed above, certain other
research also connects evolutionary dynamics with methods from
information theory and statistical inference. We will briefly
contrast this work with the results presented here. Weinberger
(2002) considers the ‘‘semantic content’’, or meaning, of informa-
tion in a theory of pragmatic information. Although there are
formal similarities between this work and our own, specifically
the use of a KL divergence, the goal is quite different. Our intent is
to quantify the difference from randomness, reflecting the effects
of evolutionary processes on the distribution of genotypes. This
objective results in a different choice for the distributions used in
the KL divergence. In Weinberger’s pragmatic information, the
initial and current genotype distributions are employed. In our
work, a uniform distribution is used instead of the initial
distribution of genotypes, reflecting the expected distribution if
a population experiences no selection.

Fisher information, an idea from statistical inference, has also
been applied to evolutionary dynamics (Frieden et al., 2001;
Frank, 2009). This measure quantifies uncertainty in the estima-
tion of a parameter from a statistical model, given some set of
data. Applying this idea to evolutionary biology, the population of
genotypes can be thought of as performing statistical inference on
the underlying fitness landscape. Although we will not pursue this
idea here, the fundamental connection of statistical inference and
information theory suggests that future attempts to reconcile
Fisher information with the formulation of biological information
discussed here would be fruitful.

There are many other directions that the present research in
biological information can be taken. A first step toward applica-
tion to real data is to consider evolutionary models with finite
populations. In this context, the size of the population becomes a
potentially limiting factor in the ability to acquire biological
information. Development of statistical inference methods for this
step will require an investigation into the connections between
biological information and inference. Also of interest is the
application of these ideas to temporally changing fitness land-
scapes. Specifically, mechanistic models that include effects such
as resource competition and predator–prey interactions would
result in dynamic fitness values.

Finally, we consider the long-term goal of this research: to
apply the methods developed here to real sequence data. A
natural place to start is by considering experimental evolution in
computational (Lenski et al., 1999, 2003) and bacterial (Lenski and
Travisano, 1994) settings. In the computational arena, Avida
(Ofria and Wilke, 2004; Adami, 2006) provides a non-trivial
genotype-to-phenotype map, one that allows the evolution of
complex computational tasks. Application of the refined approx-
imation developed here promises to elucidate details in the
evolutionary emergence of these complex features. Consideration
of biological data may seem like a distant possibility, but is
increasingly probable. With the ability to sequence full popula-
tions of bacteria and phage with increasing coverage (Wichman
et al., 2005; Barrick and Lenski, 2009), the ability to apply the
techniques developed here to biological populations might soon
be a reality.
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Appendix A. Marginal distributions

In this appendix we describe the calculation of marginal
distributions from the genotype frequencies Xðs,tÞ. It is important
to note that the quasispecies equation, described in Eq. (5), is
constructed to ensure the distribution of genotypes is properly
normalized at all times (generations) t:X
sAL

Xðs,tÞ ¼ 1: ðA:1Þ

A marginal distribution describes the distribution of alleles at
some subset of loci. In this endeavor, it is useful to think of a
genotype as being made up of its loci: s¼ s1s2 in the two-locus
landscape and s¼ s1s2s3s4 in the four-locus landscape. We can
then express the genotype distribution as Xðs1s2,tÞ for a two-
locus fitness landscape. Similar expressions hold for longer
genomes.

Given the more explicit notation introduced above, we can
now consider the distribution of alleles at a subset of loci. As in
the main text, we use the notation Ai to indicate the set of
allowed alleles at locus si. A marginal distribution for the first
locus in a two-locus genotype is constructed using

Xðs1,tÞ ¼
X

s2 AA2

Xðs1s2,tÞ 8s1AA1: ðA:2Þ
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As a concrete example of Eq. (A.2), we consider a two-locus, two-
allele fitness landscape:

Xðs1 ¼ a,tÞ ¼ Xðab,tÞþXðaB,tÞ, ðA:3aÞ

Xðs1 ¼ A,tÞ ¼ XðAb,tÞþXðAB,tÞ, ðA:3bÞ

where A1 ¼ fa,Ag and A2 ¼ fb,Bg as introduced in Section 2.1. It is
important to note that the marginal distribution is appropriately
normalized. This property can be seen by summing both sides of
Eq. (A.2) over s1AA1. The result of this calculation is consistent
with Eq. (A.1), as required.

A set of similar calculations can be performed to construct the
marginal distribution for any subset of loci, irrespective of the
length of the genome. In general, we notate the resulting
distribution as Xðsi,tÞ or Xðsisj,tÞ to indicate all loci except si or
sisj, respectively, have been summed (integrated) out.
Appendix B. Entropy and mutual information

Here we define the set of information-theoretic quantities that
are used throughout this paper. This appendix is not meant to be
an exhaustive discussion of information theory. The interested
reader should consult a reference such as Cover and Thomas
(1991) for a more thorough discussion of these and related topics.
In all of the formulae to follow, we assume the distribution of
genotypes, Xðs,tÞ, as well as the marginal distributions, Xðsi,tÞ and
Xðsisj,tÞ, are properly normalized. We choose a base-two
logarithm for these definitions, resulting in units of bits.

We start with entropy, a quantity that reflects the average
surprisal (Tribus, 1961). Entropy is maximum when all elements
of the distribution are equally likely and is equal to zero when one
element has probability one. More formally, the entropy for the
distribution over genotypes can be written as

Hðs,tÞ ¼ �
X
sAL

Xðs,tÞlog2 Xðs,tÞ, ðB:1Þ

where 0 log2 0¼ 0 based on continuity arguments (Cover and
Thomas, 1991). In this example, the maximum entropy is log2jLj
bits, where jLj is the number of possible genotypes.

One- and two-locus entropy can also be found in a straightfor-
ward manner. These calculations employ marginal distributions
created using the methods detailed in Appendix A. The resulting
forms for the entropy in these cases are

Hðsi,tÞ ¼�
X
si AAi

Xðsi,tÞlog2 Xðsi,tÞ, ðB:2aÞ

Hðsisj,tÞ ¼�
X
si AAi

X
sj AAj

Xðsisj,tÞlog2 Xðsisj,tÞ: ðB:2bÞ

The maximum entropy is log2jAij bits for the single-locus entropy
and log2jAiJAjj bits for the two-locus entropy, where jAij is the
number of possible alleles at locus si.

Finally, we consider the mutual information between two loci.
This quantity describes the interaction between distributions of
alleles at two loci. The definition of mutual information between
locus si and sj, and its relation to the entropy defined above, are
given by

Iðsi : sj,tÞ ¼
X
si AAi

X
sj AAj

Xðsisj,tÞlog2 Xðsisj,tÞ ðB:3aÞ

�
X
si AAi

X
sj AAj

Xðsisj,tÞlog2 Xðsi,tÞXðsj,tÞ,

¼Hðsi,tÞþHðsj,tÞ�Hðsisj,tÞ: ðB:3bÞ

The form in Eq. (B.3b) is obtained by applying the entropy
definitions provided in Eq. (B.2).
Appendix C. Derivation of the biological information

In this appendix we provide a derivation of biological infor-
mation and its approximations. As we discussed in the main text,
the starting point is the KL divergence, which provides a measure
of the difference between two distributions. For example, the KL
divergence between arbitrary distributions PðsÞ and Q ðsÞ, over the
genotypes s, is given by

D½PJQ � ¼
X
sAL

PðsÞlog2
PðsÞ
Q ðsÞ

: ðC:1Þ

It is important to note that this quantity is not a distance in the
usual sense. It is not symmetric under exchange of P and Q and
does not obey a triangle inequality. However, the KL divergence is
equal to zero when the distributions under consideration are
identical and greater than zero when they are different.

Our definition of biological information employs Eq. (C.1),
using observed and uniform distributions of genotypes. These are
Xðs,tÞ, from the quasispecies equation, and a uniform distribution
for all genotypes, PrðsÞ ¼ jLj�1, respectively. We can write the
most general form of biological information as

Iðs,tÞ ¼
X
sAL

Xðs,tÞlog2
Xðs,tÞ

jLj�1
ðC:2aÞ

¼ log2jLj�Hðs,tÞ, ðC:2bÞ

where Hðs,tÞ is the entropy defined in Eq. (B.1). We change the
notation for this KL divergence to Iðs,tÞ, indicating that the
biological information we are considering is for the population of
genotypes. Although this notation is a little misleading, we feel it
allows the series of approximations described in this appendix to
be more clearly understood and emphasizes the biological
meaning of the quantity.

Additional simplification of the biological information can be
made when the number of alleles per locus is constant. This
assumption is often true in theoretical models and certainly
applies when these methods are used on DNA, RNA and protein
sequences. In this case, we assume there are jAj alleles per locus
and the genotype has L loci. This property means that the number
of possible genotypes is given by jLj ¼ jAjL and the general form
for the biological information can be simplified to

Iðs,tÞ ¼ L log2jAj�Hðs,tÞ: ðC:3Þ

Next, we consider approximations of the complete biological
information, which are important for two reasons. First, it is often
difficult to accurately infer genotype frequencies in cases where
finite data samples are considered. This issue motivates the
division of the task into smaller parts, namely considering
distributions of alleles at a single locus or pairs of loci. Second,
the division of the biological information into parts nicely mirrors
biological discussion of mutations and their effects. A single-locus
approximation tells us about non-interacting mutations whereas
the multiple-locus approximation provides details of epistatic
interactions and modular structure.

The first approximation ignores correlations between loci
(Schneider, 1997, 2000; Adami et al., 2000; Adami, 2004) by
summing the entropy of the marginal distribution at each locus:

H1ðs,tÞ ¼
XL

i ¼ 1

Hðsi,tÞ, ðC:4Þ

where Hðsi,tÞ are calculated as described in Appendix B. In
general, Eq. (C.4) overestimates the true entropy for the popula-
tion by ignoring correlations: Hðs,tÞrH1ðs,tÞ. Using the fact that
log2jAj is the maximum entropy for one locus, the single-locus
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information can be written as

Iðsi,tÞ ¼ log2jAj�Hðsi,tÞ: ðC:5Þ

Summing Eq. (C.5) over all loci provides our first approximation of
the biological information:

I1ðs,tÞ ¼
XL

i ¼ 1

Iðsi,tÞ: ðC:6Þ

This expression is a lower bound on the true biological informa-
tion because of the approximation made in writing Eq. (C.4).

The refinement of Eq. (C.6) includes correlations between all
pairs of loci by expanding the approximation of the entropy given
in Eq. (C.4) to include mutual information:

H2ðs,tÞ ¼
XL

i ¼ 1

Hðsi,tÞ�
XL

i ¼ 1

XL

j4 i

Iðsi : sj,tÞ, ðC:7Þ

where the double sum is over all unique pairs of loci. We
substitute Eq. (C.7) into Eq. (C.3) and employ Eq. (C.5) to produce

I2ðs,tÞ ¼
XL

i ¼ 1

Iðsi,tÞþ
XL

i ¼ 1

XL

j4 i

Iðsi : sj,tÞ: ðC:8Þ

For the two-locus, two-allele fitness landscapes considered in
much of this paper, I2ðs,tÞ is not an approximation, the result is
exact.
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